Projects

Categories of projects in the RLPVLSI Group

Select one of the project categories above to see projects in that category. One example project from each category appears below.

Body Sensor Networks

Body Sensor Networks

A 1 trillion node internet of things (IoT) will require sensing platforms that support numerous applications using power harvesting to avoid the cost and scalability challenge of battery replacement in such large numbers. Our previous SoCs achieve good integration and energy harvesting, but they limit supported applications, need higher end-to-end harvesting efficiency, and require duty-cycling for RF communication. In this project, we demonstrates a highly integrated, flexible SoC platform that supports multiple sensing modalities, extracts information from data flexibly across applications, harvests and delivers power efficiently, and communicates wirelessly.

Energy Efficient Circuit Design

Energy Efficient Circuit Design

As energy-constrained systems continue to reduce their power consumption, finding an optimal point of operation for the principle components in the energy budget becomes increasingly important. With energy dominant system components like communication circuits, it is important to consider both energy-per-bit and power in the context of the system’s use cases. In this project, we propose optimization of chip-to-chip links considering both power and energy per-bit to find the optimal operating voltage and activity factor while minimizing wasted energy and power.

Archive

Archive

Panoptic Dynamic Voltage Scaling (PDVS) is an exciting approach to ultra low power (ULP) design to reduce energy without sacrificing performance. The objective of PDVS is to dynamically scale energy of a digital circuit to meet real-time energy constraints and thus extend battery life. Consumers demand longer battery life. Some batteries in remote sensors such a forest or desert cannot be changed. Changing batteries within biomedical devices could have adverse effects on the patient.