
1 IEEE CICC 2021/ Session 3: Modelling and Design Automation for Emerging Applications/ Paper 3-2
MemGen: An Open-Source Framework for Autonomous
Generation of Memory Macros
Sumanth Kamineni, Shourya Gupta, Benton H. Calhoun
University of Virginia, Charlottesville, USA
Static Random-Access Memories (SRAMs) form an integral part of
System-on-Chips (SoCs), wireless sensor nodes and other Internet-
of-Things (IoT) devices. SRAM has a large, multi-dimensional design
space that includes different bit-cell designs, peripheral assist-circuit
designs, operating voltages, and frequency targets. Custom design
of memories for any application in this broad design space is a
tedious, iterative, and time-consuming process. Commercial memory
compilers (CMCs) [1]-[3] provide an automated alternative, but
CMCs often have a limited design space usually emphasizing high
performance and may not be readily available due to cost or licensing
issues, especially for newer technologies. To address these issues
and allow easy, autonomous, and versatile generation of optimized
memory macros, we present MemGen (“Memory Macro Generator”),
an open-source memory macro generation framework that creates
tapeout-ready integrated memories across a broad range of
voltages, frequencies, and capacities. The new framework uses a
template and cell-based design methodology and leverages the
conventional digital tool flow to generate optimized memories based
on high-level user intent, making it highly modular, process-portable,
and easily augmentable. We demonstrate the framework’s capability
by generating multiple memories for various use cases in a planar
65nm and in a 12nm FinFET process. MemGen is also verified by
fabricating 64kbit and 128kbit 65nm auto-generated memories.

Fig. 1 shows the design and application space covered by MemGen,
CMCs, and other academic reported compilers [4]-[6]. CMCs offer
many features, but they have a narrower design space, thereby
limiting their application especially for power constrained circuits.
Other academic compilers also offer a suite of various features, but
they fall short on many other features as shown in Table 1 in Fig.1.
MemGen offers to generate memories in other regions of the design
space where CMCs cannot be used, such as low voltage designs for
ultra-low power applications. Unlike other CMCs and academic
compilers, MemGen can generate memories by performing device-
circuit-architecture co-design. This is enabled by a closed-loop
integrated flow that involves the translation of high-level user intent
(e.g., voltage, frequency, and capacity) into an optimized SRAM
layout through tightly coupled design-space exploration,
optimization, and layout generation. Additionally, to the best of the
authors’ knowledge, MemGen is the first open-source memory
compiler to support advanced FinFET processes. The framework is
implemented in python and the source code is available from
github.com/idea-fasoc/fasoc/tree/master/generators/memory-gen

Fig. 2 shows the high-level overview of the MemGen framework and
the critical steps (1, 2 and 3) involved in generating a memory. To
enable MemGen to create memories in a specific technology, a one-
time Process Design Kit (PDK) setup is required. The first step in the
setup process is the PDK characterization, which involves running
device-level simulations to extract information such as transistor
behavior, bit-cell characteristics, metal parasitics, threshold voltage
(VT), and FO4 delay using a scripted template-based methodology
that separates the technology dependent and independent aspects
of the circuits. The second step involves the generation of aux-cells.
Aux-cells are small SRAM peripheral circuits that extend the
standard-cell library and provide specific analog functionality
required for memory operation. These aux-cells vary in terms of drive
strengths, circuit topology, and VT; and include all files which are
required as a part of a conventional synthesis and Auto-Place-Route
(APR) flow. The process setup completes by generating PDK-
specific SRAM Hierarchical Memory Model (HMM), which allows
quick estimation of SRAM global figures of merits (FOMs) energy(E)
and delay(D), thereby circumventing the need for resource intensive
and time-consuming complete circuit simulations [7].

MemGen creates SRAMs optimized for energy and area by
minimizing a weighted cost function 𝐶(𝑥), subject to a user desired
clock period (𝑇!"#) constraint. Formally, this can be defined as
min𝐶(𝑥)	 𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑇$% ≤	𝑇!"#. 𝐶(𝑥) is calculated as

𝐶(𝑥) = 𝑊&𝐸(𝑥) +𝑊'𝐴(𝑥) = 	𝑊& ∑ 𝑒((𝑥))
(*+ +𝑊' ∑ 𝑎((𝑥))

(*+ (1)
where 𝑇$% is the operating time of SRAM under design, 𝑥 is a vector
of 𝑛 optimization variables 𝑥+,	𝑥,,…,	𝑥-, 𝑐 → number of sub-
components, 𝐸(𝑥) → energy-per-access and 𝐴(𝑥) → SRAM area,
𝑒((𝑥) → component’s energy, 𝑎((𝑥) → components’ area, 𝑊& →
energy weight, 𝑊' → area weight. The user may vary energy and
area weights as per their application priorities.

MemGen considers the number of banks (B), rows (R), and columns
(C) per bank at the architectural level and device sizing, device type
(High-Low-Reg. VT), and component topology at the circuit level as
optimization variables to minimize the cost function 𝐶(𝑥). For a given
user intent, the optimization process starts by generating a set of
optimal FOM tradeoff points using the HMM and tuning architectural
knobs, as shown in Fig. 3(a). These optimal points prune the design
space from an architectural perspective. If any of the optimal points
satisfy the user intent, the framework moves to the macro generation
phase. Otherwise, with the optimal points as the starting points, the
optimizer proceeds with an iterative design space exploration by
assessing the components affecting the FoMs and tuning the circuit
knobs to minimize 𝐶(𝑥) until 𝑇!"# constraint is met, as shown in Fig.
3(a)-(d). It performs sensitivity analysis to calculate the optimization’s
profitability and selects the auxcell corresponding to the knob that
achieves the highest profit. The design space can be extended by
adding new architectures or new aux-cells using scripted circuit
templates, making MemGen modular and easily augmentable.

The final step involves creating the SRAM macro layout using the
macro generator shown in Fig.2. Macro generator streamlines and
automates the layout generation flow by wrapping several sub-
generators required for digital tool flow. It creates the required inputs
and the tool scripts for each stage by analyzing the previous stage
results. MemGen employs a hierarchical tree-based multi-bank
architecture by default, as shown in Fig. 4(a), but users can define a
new architecture through a scripted template. Fig 4(b) illustrates
synchronous read and write memory transactions with input and
output signals. The Verilog and timing-constraints generators create
synthesizable bespoke structural Verilog and timing constraints
scripts using parameterized templates and according to memory
architecture. Synthesizer runs the synthesis to create Register
Transfer Language (RTL) netlists and other files required to run the
APR. In the APR, the floor planner analyzes synthesis outputs and
performs the design floor-planning and power-planning; the placer
and router places all the design instances, generates the clock tree,
and routes the design to form a complete multi-bank memory macro.
As part of the final design signoff process, MemGen performs a
functional and performance check on the final output to ensure that
the design operates according to the user’s intent.

Fig. 5 shows various MemGen auto-generated SRAM macro layouts
and the simulated energy and delay values in two different PDKs,
demonstrating MemGen’s versatility. To experimentally verify the
framework, we taped out two different SRAM macros (64kbit and
128kbit) auto-generated using MemGen for two user intents (1: sub-
VT operation, 50KHz. 2: super-VT operation, 50MHz) in 65nm. Fig.
6 summarizes the power and frequency chip measurement results
and the step-wise framework runtime breakdown for the generation
process. The first design achieved 131nW at 100KHz and 0.5V, and
the second design achieved a peak performance of 65 MHz with
2.09mW power at 1.2V. In contrast to [1]-[6], MemGen created
memories that exceeded the targeted specs in broad design space,
with a macro generation runtime of ≤138 min in each case.

Acknowledgement:
This work was funded in part by the Defense Advanced Research
Projects Agency (DARPA) under agreement no. FA8650-18-2-7844.
References:
[1]https://developer.arm.com.[2]http://www.globalfoundries.com.[3]h
ttps://www.synopsys.com [4] K. Chakraborty, et. al, IEEE TVLSI, Vol.
9, No. 2, pp. 352-364, April 2001.[5] M. Guthaus, et. al, IEEE ICCAD,
Austin, TX, pp. 1-6, Nov 2016. [6] S. Ataei et. al, IEEE ASYNC,
Hirosaki, Japan, pp. 1-8, 2019. [7] N. Liu et. al., ISVLSI, PA, USA,
2016, pp. 535-540.

978-1-7281-7581-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 C
us

to
m

 In
te

gr
at

ed
 C

irc
ui

ts
 C

on
fe

re
nc

e
(C

IC
C

) |
 9

78
-1

-7
28

1-
75

81
-2

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
IC

C
51

47
2.

20
21

.9
43

15
01

IEEE CICC 2021/ Session 3: Modelling and Design Automation for Emerging Applications/ Paper 3-2 2

Fig. 1. (a) Target design space for MemGen (b) Comparison of
MemGen with other compilers in terms of features and capability.

Fig. 2. MemGen Framework high-level overview and critical steps.

Fig. 3. (a) E and D pareto curves with varying capacity generated
using HMM. (b) Pareto improvement using component level
optimization. Component-wise breakdown of (c) D and (d) E.

Fig. 4. (a) Block diagram of the default SRAM architecture
employed in the MemGen (b) Timing diagram of the SRAM.

Fig. 5. Layouts of different SRAMs auto-generated using MemGen
in planar 65nm and 12nm FinFET process.

Fig. 6. (a) SRAM use cases (b) Framework runtime breakdown for
use cases 1 and 2 (c) Frequency and power measurement results.

(a)

(b)

10nW 100nW 1uW 10uW 100uW 1mW 10mW 100mW
Power (W)

1KHz

10KHz

100KHz

1MHz

10MHz

100MHz

1GHz

10GHz
Fr

eq
ue

nc
y

(H
z)

MemGen
• IoT Wireless Sensor Nodes
• Battery Powered Devices
• Self Powered Devices

Commercial Memory Compilers
• Workstations
• Servers
• High Performance Devices

[1]-[3]

Measurements from
65nm MemGen SRAMs

PDK
STD Cells

PDK Config.

User Intent

Aux-cell
Library

Aux-cell Generation

PDK Characterization

Model Generation

Hierarchical Memory
Model (HMM) [7]

Simulation Global FoM Estimator

Characterization Scripts Sensitivity Analysis

Layout Generator

Validation

Verilog Generator

SRAM
Macro

.GDS .LEF
.LIB

SRAM Library

Met
Specs

No
Pareto Optimal

Points

User Intent

HMMAux-cell
Library

Determine Components
affecting Specs.

Tune Knobs
v Drive Strength
v Device Type
v Topology

Sensitivity Analysis

Aux-cell
Library

No

Floor-Planner (Floor and Power Planning)

Synthesizer (Synthesis)

Timing Verification

Place and Router (CTS)

Architecture and Components

SRAM Layout

Met
Specs

NoNo
HMM

Macro Generator

Met
Constraints

Arch. Options
(#R, #C, #B)

Yes

Yes

Verilog Generator Timing Constraints Gen.

Yes

TCLK,
TWR, TRD

Process Setup
(One Time per PDK)

#R, #C, #B
and circuit

components

.v .tcl

.v, .sdc

.fp.tcl, .pp.tcl

.gds

.gds, .lib,
.lef

1
2 3

1

2 3

User
Intent SRAM

Aux-
cells

Process
Setup

Explorer and
Optimizer

Macro
Generator

Au
to

-P
la

ce
-R

ou
te

 (A
PR

)

0
0.2
0.4
0.6
0.8

1
1.2

Case 1 Case 2

No
rm

. E
ne

rg
y (

J)

Comp. Energy Breakdown

0.1

0.3

0.5

0.7

0.9

1.1

0.4 0.6 0.8 1

No
rm

. E
ne

rg
y (

J)

Norm. Delay (sec)

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1

No
rm

. E
ne

rg
y (

J)

Norm. Delay (sec)

Capacity
(32kbit to
0.5Mbit)

co
lu
m
ns

rows

E-D Paretos
Write Driver
1X, 2X, 4X

Write Driver (1X, 4X)
+ Sense-Amp (1X, 2X)

35%

17%
21%

0
0.2
0.4
0.6
0.8

1
1.2

Case 1 Case 2

No
rm

. D
el

ay
 (s

ec
)

Comp. Delay Breakdown

Base Case Optimized Base Case Optimized

34.9%
Avg. decrease

3.1%
Avg.

decrease

(a) (b)

(c) (d)

Write Driver
Pre-charge

SA+BL Discharge

Col. Decoder
Row Decoder +
WL Driver

Components

improve

trend

Treq

(12nm; 0.5Mbit;
32bit Word;8 Banks)

Base Case

Tsetup Thold

Write Operation Read Operation

Write Time Read Time

Clock

Address

Chip-Enable (CE)

Write-Enable (WE)

Data IN

Bit-Cell Data

Data OUT

(CE = 1, WE = 1) (CE = 1, WE = 0)

Gl
ob

al
 C

on
tr

ol
 Lo

gi
cSub-Global Logic

Sub-Global Logic

Sub-Global Logic

Sub-Global Logic Sub-Global Logic Sub-Global Logic

Sub-Global Logic Sub-Global Logic

SRAM Architecture Block Diagram

Bi
t C

el
l A

rr
ay

Bi
t C

el
l A

rr
ay

Bi
t C

el
l A

rr
ay

Bi
t C

el
l A

rr
ay

Decoder

Ti
m

er

Ci
rc

ui
t

Pr
e-

Ch
ar

ge
, C

ol
-M

ux
Se

ns
e-

Am
p,

 W
rit

e
Dr

iv
er

C
: C

ol
um

ns

R: Rows

Drivers

Decoder

Drivers

Drivers

Drivers

Pr
e-

Ch
ar

ge
, C

ol
-M

ux
Se

ns
e-

Am
p,

 W
rit

e
Dr

iv
er

(a)

(b)

Tsetup Thold

Write Operation Read Operation

Write Time Read Time

Clock

Address

Chip-Enable (CE)

Write-Enable (WE)

Data IN

Bit-Cell Data

Data OUT

(CE = 1, WE = 1) (CE = 1, WE = 0)

Inputs

Output

0.8 0.9 1 1.1 1.2
Supply Voltage (V)

100

101

102

M
ax

. F
re

qu
en

cy
 (M

H
z)

10-1

100

101

Po
w

er
 @

 F M
AX

 (m
W

)

Measured Max. Frequency (MHz)
Measured Power @FMAX (mW)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Supply Voltage (V)

10-2

10-1

100

101

102

M
ax

. F
re

qu
en

cy
 (M

H
z)

10-4

10-3

10-2

10-1

100

101

Po
w

er
 @

 F M
AX

 (m
W

)

Measured Max. Frequency (MHz)
Measured Power @FMAX (mW)

Use Case 1
v Cap: 64kbit

v Target Freq: 50KHz

v Target VDD: 0.5V

Use Case 2
v Cap: 128kbit

v Target Freq: 50MHz

v Target VDD: 1.2V

Run-Time: 136 Min. Run-Time: 138 Min.

(a)

(b)

(c)

65nm 64kbit 65nm 128kbit

64kbit 128kbit

1 2 (1) Optimization

(3) Constraint Gen.

(5) Floor & Power __
Planning

(2) Verilog Gen.

(4) Synthesis

(6) Placement
__ & Routing

1 2
3 4
5 6

1 2
3 4
5 6

1 2
3 4
5 6

1 2
3 4
5 6

1 2
3 4
5 6

1 2
3 4
5 6

SRAM
563!m

20
9!
m

0.236mm20.117mm2

1131!m

20
9!
m

