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Static Random-Access Memories (SRAMs) form an integral part of 
System-on-Chips (SoCs), wireless sensor nodes and other Internet-
of-Things (IoT) devices. SRAM has a large, multi-dimensional design 
space that includes different bit-cell designs, peripheral assist-circuit 
designs, operating voltages, and frequency targets. Custom design 
of memories for any application in this broad design space is a 
tedious, iterative, and time-consuming process. Commercial memory 
compilers (CMCs) [1]-[3] provide an automated alternative, but 
CMCs often have a limited design space usually emphasizing high 
performance and may not be readily available due to cost or licensing 
issues, especially for newer technologies. To address these issues 
and allow easy, autonomous, and versatile generation of optimized 
memory macros, we present MemGen (“Memory Macro Generator”), 
an open-source memory macro generation framework that creates 
tapeout-ready integrated memories across a broad range of 
voltages, frequencies, and capacities. The new framework uses a 
template and cell-based design methodology and leverages the 
conventional digital tool flow to generate optimized memories based 
on high-level user intent, making it highly modular, process-portable, 
and easily augmentable. We demonstrate the framework’s capability 
by generating multiple memories for various use cases in a planar 
65nm and in a 12nm FinFET process. MemGen is also verified by 
fabricating 64kbit and 128kbit 65nm auto-generated memories. 

Fig. 1 shows the design and application space covered by MemGen, 
CMCs, and other academic reported compilers [4]-[6]. CMCs offer 
many features, but they have a narrower design space, thereby 
limiting their application especially for power constrained circuits. 
Other academic compilers also offer a suite of various features, but 
they fall short on many other features as shown in Table 1 in Fig.1. 
MemGen offers to generate memories in other regions of the design 
space where CMCs cannot be used, such as low voltage designs for 
ultra-low power applications. Unlike other CMCs and academic 
compilers, MemGen can generate memories by performing device-
circuit-architecture co-design. This is enabled by a closed-loop 
integrated flow that involves the translation of high-level user intent 
(e.g., voltage, frequency, and capacity) into an optimized SRAM 
layout through tightly coupled design-space exploration, 
optimization, and layout generation. Additionally, to the best of the 
authors’ knowledge, MemGen is the first open-source memory 
compiler to support advanced FinFET processes. The framework is 
implemented in python and the source code is available from 
github.com/idea-fasoc/fasoc/tree/master/generators/memory-gen 

Fig. 2 shows the high-level overview of the MemGen framework and 
the critical steps (1, 2 and 3) involved in generating a memory. To 
enable MemGen to create memories in a specific technology, a one-
time Process Design Kit (PDK) setup is required. The first step in the 
setup process is the PDK characterization, which involves running 
device-level simulations to extract information such as transistor 
behavior, bit-cell characteristics, metal parasitics, threshold voltage 
(VT), and FO4 delay using a scripted template-based methodology 
that separates the technology dependent and independent aspects 
of the circuits. The second step involves the generation of aux-cells. 
Aux-cells are small SRAM peripheral circuits that extend the 
standard-cell library and provide specific analog functionality 
required for memory operation. These aux-cells vary in terms of drive 
strengths, circuit topology, and VT; and include all files which are 
required as a part of a conventional synthesis and Auto-Place-Route 
(APR) flow. The process setup completes by generating PDK-
specific SRAM Hierarchical Memory Model (HMM), which allows 
quick estimation of SRAM global figures of merits (FOMs) energy(E) 
and delay(D), thereby circumventing the need for resource intensive 
and time-consuming complete circuit simulations [7].  

MemGen creates SRAMs optimized for energy and area by 
minimizing a weighted cost function 𝐶(𝑥), subject to a user desired 
clock period (𝑇!"#) constraint. Formally, this can be defined as 
min𝐶(𝑥)	 𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑇$% ≤	𝑇!"#. 𝐶(𝑥) is calculated as  

𝐶(𝑥) = 𝑊&𝐸(𝑥) +𝑊'𝐴(𝑥) = 	𝑊& ∑ 𝑒((𝑥))
(*+ +𝑊' ∑ 𝑎((𝑥))

(*+ (1)                                     
where 𝑇$% is the operating time of SRAM under design, 𝑥 is a vector 
of 𝑛 optimization variables 𝑥+,	𝑥,,…,	𝑥-, 𝑐 → number of sub-
components, 𝐸(𝑥) → energy-per-access and 𝐴(𝑥) → SRAM area, 
𝑒((𝑥) → component’s energy, 𝑎((𝑥) → components’ area, 𝑊& → 
energy weight, 𝑊' → area weight. The user may vary energy and 
area weights as per their application priorities.  

MemGen considers the number of banks (B), rows (R), and columns 
(C) per bank at the architectural level and device sizing, device type 
(High-Low-Reg. VT), and component topology at the circuit level as 
optimization variables to minimize the cost function 𝐶(𝑥).  For a given 
user intent, the optimization process starts by generating a set of 
optimal FOM tradeoff points using the HMM and tuning architectural 
knobs, as shown in Fig. 3(a). These optimal points prune the design 
space from an architectural perspective. If any of the optimal points 
satisfy the user intent, the framework moves to the macro generation 
phase. Otherwise, with the optimal points as the starting points, the 
optimizer proceeds with an iterative design space exploration by 
assessing the components affecting the FoMs and tuning the circuit 
knobs to minimize 𝐶(𝑥) until 𝑇!"# constraint is met, as shown in Fig. 
3(a)-(d). It performs sensitivity analysis to calculate the optimization’s 
profitability and selects the auxcell corresponding to the knob that 
achieves the highest profit.  The design space can be extended by 
adding new architectures or new aux-cells using scripted circuit 
templates, making MemGen modular and easily augmentable.  

The final step involves creating the SRAM macro layout using the 
macro generator shown in Fig.2. Macro generator streamlines and 
automates the layout generation flow by wrapping several sub-
generators required for digital tool flow. It creates the required inputs 
and the tool scripts for each stage by analyzing the previous stage 
results. MemGen employs a hierarchical tree-based multi-bank 
architecture by default, as shown in Fig. 4(a), but users can define a 
new architecture through a scripted template. Fig 4(b) illustrates 
synchronous read and write memory transactions with input and 
output signals. The Verilog and timing-constraints generators create 
synthesizable bespoke structural Verilog and timing constraints 
scripts using parameterized templates and according to memory 
architecture. Synthesizer runs the synthesis to create Register 
Transfer Language (RTL) netlists and other files required to run the 
APR. In the APR, the floor planner analyzes synthesis outputs and 
performs the design floor-planning and power-planning; the placer 
and router places all the design instances, generates the clock tree, 
and routes the design to form a complete multi-bank memory macro. 
As part of the final design signoff process, MemGen performs a 
functional and performance check on the final output to ensure that 
the design operates according to the user’s intent.  

Fig. 5 shows various MemGen auto-generated SRAM macro layouts 
and the simulated energy and delay values in two different PDKs, 
demonstrating MemGen’s versatility. To experimentally verify the 
framework, we taped out two different SRAM macros (64kbit and 
128kbit) auto-generated using MemGen for two user intents (1: sub-
VT operation,  50KHz. 2: super-VT operation, 50MHz) in 65nm.  Fig. 
6 summarizes the power and frequency chip measurement results 
and the step-wise framework runtime breakdown for the generation 
process. The first design achieved 131nW at 100KHz and 0.5V, and 
the second design achieved a peak performance of 65 MHz with 
2.09mW power at 1.2V. In contrast to [1]-[6], MemGen created 
memories that exceeded the targeted specs in broad design space, 
with a macro generation runtime of ≤138 min in each case. 
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Fig. 1. (a) Target design space for MemGen (b) Comparison of 
MemGen with other compilers in terms of features and capability. 

 
Fig. 2. MemGen Framework high-level overview and critical steps.  

Fig. 3. (a) E and D pareto curves with varying capacity generated 
using HMM. (b) Pareto improvement using component level 
optimization. Component-wise breakdown of (c) D and (d) E. 

 
Fig. 4. (a) Block diagram of the default SRAM architecture 
employed in the MemGen (b) Timing diagram of the SRAM. 

 
Fig. 5. Layouts of different SRAMs auto-generated using MemGen 
in planar 65nm and 12nm FinFET process. 

 
Fig. 6. (a) SRAM use cases (b) Framework runtime breakdown for 
use cases 1 and 2 (c) Frequency and power measurement results.  
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