

An Energy-Efficient Near/Sub-Threshold FPGA Interconnect Architecture Using Dynamic Voltage Scaling and Power-Gating

He Qi, Oluseyi Ayorinde, and Benton H. Calhoun Charles L. Brown Department of Electrical and Computer Engineering

> University of Virginia Charlottesville, Virginia hq5tj,oaa4bj,bhc2bi@virginia.edu

Robust Low Power VLSI

Motivation

By 2020, there will be more than 50 billion electronic devices in total and 6.58 per person connected to internet.

Source: Evans, Dave. "The internet of things: How the next evolution of the internet is changing everything." CISCO white paper 1 (2011): 1-11.

The majority of these electronic devices will be Low-power sensors in Ubiquitous Computing.

- Health Sensors
- Environmental Sensors

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9G cQCNBXqldhnsSVYp4y1A4MnKeoVOVfLomVOqtyQT-wQRZij_sy7

http://www.valencell.com/blog/2013/12/wearable-technology-all-about-people

Motivation

Requirements on Hardware

- Low Power/Energy Consumption
- Substantial Processing Capability
- Flexible Hardware

Power

Low Development and Deployment Cost

Performance

The power of existing LP FPGAs exceed the energy budget of sensor applications.

Solution

• ULP FPGA operating in sub/near-threshold

FPGAs meet all of these

requirements.

Background FPGA Energy Breakdown

Logic 10 9% 21% Clock Interconnect

- The interconnect dominates FPGA delay & energy.
- To reduce energy, we proposed an lowswing interconnect in our prior work by removing buffers and properly sizing the circuits at near/sub-threshold.

Low-Swing Interconnect

Our low-swing interconnect is proved to be 42.7% lower energy than a traditional unidirectional interconnect at 0.4V.

However, energy waste still exist in the low-swing interconnect.

Problems

Energy Waste in Low-Swing Interconnect

• Energy Waste #1: Attaching circuits on non-critical paths to the same supply voltage of circuits on critical paths is a waste of energy.

Observations

 The delay of the non-critical paths is unnecessarily small. Reducing the supply voltage of circuits on non-critical paths saves energy without affecting the overall FPGA speed.

Problems

Energy Waste in Low-Swing Interconnect

 Energy Waste #2: The interconnect resources that are in idle mode consume a lot of leakage energy, especially in sub-threshold region.

ENERGY DISTRIBUTION @ VDD=0.6

Observations

- Implementing the showing benchmarks, over 40% of the total FPGA energy is wasted in the form of idle circuit leakage.
- The idle circuit leakage energy mostly comes from configuration bitcells.

Problems

Typical Solutions

- **Dual-VDD**: apply a lower VDD to the circuits on non-critical paths
- **Power-Gating**: cut off the connections between the idle circuits and supply voltages using headers.

However

- Due to the large area overhead, no existing work applied dual-VDD to the traditional Interconnect.
- No existing work applied Power-Gating to configuration bitcells.

Contributions

Contributions

- We applied dual-VDD technique to the low-swing FPGA interconnect at near/sub-threshold.
- We applied power-gating technique to the idle configuration bitcells.
- We developed a new dynamic voltage scaling architecture for low-swing interconnect.
- We designed a power management unit enabling dual-VDD and DVS.

Tasks

- SPICE Simulation
- Energy Saving Evaluation
- Overhead Evaluation
- Tool Development
- Chip Measurement of a Custom 512-LUT FPGA

Proposed Architecture

- The VDDH & VDDL are generated by a LDO, along with the headers to perform dual-VDD and power-gating.
- The VDDC is generated by a delay-chain-based control logic to perform DVS.

Proposed Architecture

Details of the delay-chain-based control logic

Methodology

Results --- Dual-VDD

Observations * VRO : the energy overhead of the voltage regulator

- The optimal VDDL in terms of energy is obtained at 0.1V lower than VDDH.
- The energy reduction of using dual-VDD is about 20% on average, but reduces to about 10% when considering voltage regulator overhead.

Results --- Dual-VDD & Power-Gating

Observations

- Using coarse-grained power-gating & dual-VDD together with considering voltage regulator overhead, the energy reduction reaches 17.5 ~ 21.9%. If using fine-grained power-gating, the energy reduction reaches 43.7 ~ 62.2%.
- The measurement results of a custom 512-LUT FPGA shows an 91.1% leakage energy reduction using coarse-grained power-gating itself.

Results --- DVS

ED-Curves of the FPGA When Using DVS ($V_{DD} = 0.6V$) → apex2 (w/o R) ·· ▲·· apex2 (w/ R) * R: repeater 80 Delay: 0.22us Energy/Op: 35.7pJ 75 70 0.7 Energy/Op (pJ) 62 20 20 20 20 20 20 Delay: 0.43us 0.6 Energy/Op: 21.9pJ $V_{DDC} = V_{DD}$ 0.5 0.4 $V_{DDC} - V_{DD} = 0.1V$ 0.3 45 0.2 40 1.0 0.0 2.0 3.0 Delay (us)

Observations

For APEX2 at 0.6V, by sweeping VDDC from VDD to 0.7V higher than VDD, the critical path delay can be adjusted in the range of 0.22us ~ 0.43us, while the total FPGA energy per operation can be adjusted in the range of 21.9pJ ~ 35.7pJ.

Conclusions

Contributions

- We applied dual-VDD technique to the low-swing FPGA interconnect at near/sub-threshold with tool support.
- We applied power-gating technique to the idle configuration bitcells.
- We developed a new dynamic voltage scaling architecture for low-swing interconnect.
- We designed a power management unit enabling dual-VDD and DVS.

Limitations & Future work

- **Dual-VDD:** We haven't developed a tool for configuring dual-VDD on chips. We have no measurement results for dual-VDD so far.
- Power-Gating: We haven't optimized the layout of switch boxes using fine-grained power-gating.
- Benchmarks: We haven't evaluate the proposed architecture using IoT applications

Thank you! Questions?

Backup Slides

Noise & Crosstalk

]þ-

	Worst Case Crosstalk	No Crosstalk	
Critical Path Delay (us)	0.23	0.14	
Energy Reduction of the Full FPGA when Using Dual-VDD (%)	9.8	11.0	
Sensitivity of Critical Path Delay to VDDH & VDDL Noise (%/10mV)	+ 2.1	+ 3.1	
Sensitivity of Full FPGA Energy to VDDH & VDDL Noise (%/10mV)	- 3.2	+ 0.4	
Sensitivity of Critical Path Delay to VDDC Noise (%/10mV)	+ 1.3	+ 0.9	
Sensitivity of Full FPGA Energy to VDDC Noise (%/10mV)	+ 0.9	+ 0.7	

Benchmark Characterization

]թ.

Benchmark	LUT Count	FF Count	I/O Count
alu4	1522	Combinational	22
apex2	1878	Combinational	41
apex4	1262	Combinational	28
des	1591	Combinational	501
ex5p	1064	Combinational	71

Comparisons with Prior Art

]Ի

Specs	[6]	[7]	[5]	This work
VDDH/VDDL (V)	1.1/0.9	1.8/1.26 ~ 1.57	1.3/0.8 ~ 1.0	0.6/0.45 ~ 0.6
Interconnect type	Uni-directional	Uni-directional	Bi-directional	Unidirectional Low-swing
Relative				
interconnect				
energy at the	1	1 47	1 20	0.64 ~ 0.86
same VDD and	I	1.47	1.39	0.64 0.86
technology node				
(x)				
The adjustable	Not support		Not support	
speed range by		Not provided		2.3 ~ 7.1
using DVS (MHz)	DVS		DVS	
The adjustable				
energy range by	Not support	Netprovided	Not support	
using DVS	DVS	Not provided	DVS	5.5 55.7
(pJ/Op)				