Minimizing Offset for Latching Voltage-Mode Sense Amplifiers for Sub-threshold Operation

(A Digital Designer’s View)

Joseph F. Ryan and Benton H. Calhoun

The University of Virginia
Department of Electrical Engineering
Sub-V_T Sense Amps: Outline

- Sense Amplifiers in Sub-V_T
- Intrinsic Offset
- Design Methodology
- Design Examples
- Conclusion
Sense Amps

- Sense Amplifier – circuit component that compares two DC voltages and latches a digital value based on which input is larger.

- Used in SRAM, DRAM, ADCs, Interconnect, etc.

- Tricky in Sub-\(V_T \)
Sub-threshold Operation

- $V_{DD} < V_T$
- Sub-threshold current for I_{ON} and I_{OFF}
- Well-suited for minimum energy or ultra-low power applications
Sub-V_T Sense Amps: Outline

- Sense Amplifiers in Sub-V_T
- Intrinsic Offset
- Reducing Offset
- Design Examples
- Conclusion
Sub V_T Sense Amps: The Problem

- Sense Amplifier offset voltage: Intrinsic error caused by Process Variations.

- Becomes relatively worse at low V_{DD}, especially in newer technologies!

![Graph showing distribution of V_{OS}/V_{DD} for 90nm and 45nm technologies with V_{DD} of 1V (dashed) and 0.4V (solid).]
Sub-V_T Sense Amps

- Primary concern: reduce offset
 - Why? More robust and efficient

- Approach: Find sources of offset
 - Develop a model and design methodology.
Sense-Amp Offset – Input Pair

- Offset Contributions from input pair
- Assuming random V_T variation between M2 and M3,

$V_{OS} = V_{T2} - V_{T3}$.
Sense-Amp Offset – Inverter Pair

- Next up: the cross-coupled inverter pair.
- Contribution from PMOS: very small.

- The NMOS pair, however, has a large effect on V_{OS}.

- Analyze during reset phase: NMOS acts as a pass-gate
Sub-\(V_T\) Pass Gate

- \(V_D < V_T \rightarrow \) no \(V_T\) drop!
- \(V_{DS}\) drop due to leakage/load currents at the source.

- Primarily due to DIBL (Drain-Induced Barrier Lowering).

\[V_S \approx \frac{1}{\alpha} (V_G + \eta V_D + S \cdot \log_{10}(W_{PG}/N \cdot W_L)) \]
Sense-Amp Offset – Inverter Pair

- So: during reset phase, variations in V_T in M4 & M5 can cause M2 & M3 to be buried further into the Sub-V_T roll-off region due to V_{DS} shifts!
Thus, variations in M4 & M5 have just as large an impact on V_{OS} as M2 & M3!

$V_{OS} \approx (V_{T2} - V_{T3}) + (V_{T4} - V_{T5})$
Sub-V_T Sense Amps: Outline

- Sense Amplifiers in Sub-V_T
- Intrinsic Offset
- Reducing Offset
- Design Examples
- Conclusion
Reducing Offset: Sizing

- Variation in V_T proportional to $1/\sqrt{W*L}$.
- Not true for sub-V_T SA?!
- This is again due to $V_{DS2,3}$ and the roll-off region.
- What if we raise V_{DS} out of this region?
Reducing Offset

- Looking at the pass-gate DC equation provides an important clue:
 \[V_S \approx \frac{1}{\alpha} (V_G + \eta V_D + S \log_{10}(W_P/N*W_L) + \Delta V_T) \]

- \(V_G \), the voltage at the input pair, is the largest contributor – why not lower that?

- \(V_G = V_{INDC} + \Delta V_{IN} \)

- Lower \(V_{INDC} \) to lower \(V_G \).
What is V_{INDC}?

- V_{INDC} is the DC voltage at inputs before ΔV_{IN} is applied.

![Graph showing V_{INDC} and ΔV_{IN}.]

- $V_{\text{INDC}} = 400\text{mV}, \quad \Delta V_{\text{IN}} = 80\text{mV}$
- $V_{\text{INDC}} = 300\text{mV}, \quad \Delta V_{\text{IN}} = 80\text{mV}$
Reducing Offset: V_{INDC}

- Lowering V_{INDC} cancels out variation of M4 & M5 by moving $V_{\text{DS2,3}}$ out of roll-off region!

- $V_{\text{OS}} \approx (V_{T2}-V_{T3}) + (V_{T4}-V_{T5}) \times 10^{-\left(V_{\text{DD}}-V_{\text{INDC}}\right)/S}$

- Note upsizing input-pair counters V_{INDC}:

 $V_{\text{INDC-EFF}} = V_{\text{INDC}} - s \times \log_{10}(\alpha/2)$

 $\alpha = \frac{W_{\text{IN}}}{W_{\text{INV}}}$
Reducing Offset: Model

- All together provides a model for standard deviation:
 \[
 \sigma_{OS} \approx \frac{\sigma_N}{\sqrt{W_{IN}L/2}} \sqrt{1+\alpha \cdot 10^{-\frac{(V_{DD}-V_{INDC\cdot \text{EFF}})}{S}}}
 \]

- Properly matched \(V_{INDC} \) and \(W_{IN} \) cancel variation on transistors M4 & M5.
 \[
 \sigma_{OS} \approx \frac{\sigma_N}{\sqrt{L \cdot W_{IN}/2}}
 \]
Sub-V_T Sense Amps: Outline

- Sense Amplifiers in Sub-V_T
- Intrinsic Offset
- Reducing Offset
- Design Examples
- Conclusion
Design Examples - SRAM

- SRAM bitline leakage
 - Requires longer read time for $\Delta V_{BL} > V_{OS}$
- Leakage adjusts V_{INDC} of the sense-amplifier!
 - Both BLs discharge
- Decreases effective offset
 - Shorter read time possible!
Design Examples - SRAM

- T1 – Trigger if Sense-Amp offset is only measured at $V_{\text{INDC}}=0$.
- T2 – Trigger if V_{INDC} effects are considered on Sense-Amp standard deviation.
- Read-time is dramatically reduced!!
Design Examples - Interconnect

- Low-swing interconnect scheme can be faster and save more power than traditional buffer methods.
- Receiver: Sense-Amp (p-input dual) triggered before signal has finished resolving.
- Input compared to a reference rather than a paired wire to save area.

Low-Swing Receiver
Design Examples - Interconnect

- Pseudo-diff. structure has asymmetrical offset!
- Reading a “0”: $V_{INDC} = 0$.
- Reading a “1”: $V_{INDC} = V_{REF}$ \Rightarrow Pick higher V_{REF} to lower offset
- Delay-time is again dramatically reduced!

![Graph showing time vs. voltage with T1 and T2 labels]
Conclusions

- Properly matched V_{INDC} and W_{IN} cancel the effects of variation everywhere except the input pair.
- Our model leads to an efficient design methodology.
- Naturally-occurring V_{INDC} can be harnessed to improve the efficiency of the system.