Dynamic Write Limited V_{MIN} for Nanoscale SRAMs

DATE 11

¹Satyanand Nalam, ²Vikas Chandra, ²Robert C. Aitken, ¹Benton H. Calhoun ¹University of Virginia, ²ARM R&D

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

- Background and motivation
- Metrics
 - Dynamic writability metric: T_{WL-CRIT}
 - Dynamic write V_{MIN}: DWV_{MIN}
- Factors affecting DWV_{MIN}
 - WL pulse characteristics
 - Memory size
 - No: of cycles prior to first read
 - Bitcell parasitics
- Effect of Write Assist
- Conclusions

Background & Motivation

Satyanand Nalam University of Virginia

- Background and motivation
- Metrics
 - Dynamic writability metric: T_{WL-CRIT}
 - Dynamic write V_{MIN}: DWV_{MIN}
- Factors affecting DWV_{MIN}
 - WL pulse characteristics
 - Memory size
 - No: of cycles prior to first read
 - Bitcell parasitics
- Effect of Write Assist
- Conclusions

T_{WL-CRIT}

T_{WL-CRIT} = Minimum WL pulse width for successful write

- Background and motivation
- Metrics
 - Dynamic writability metric: T_{WL-CRIT}
 - Dynamic write V_{MIN}: DWV_{MIN}
- Factors affecting DWV_{MIN}
 - WL pulse characteristics
 - Memory size
 - No: of cycles prior to first read
 - Bitcell parasitics
- Effect of Write Assist
- Conclusions

Factor 1: WL pulse characteristics

WL pulse generated using replica timing path More aggressive WL pulse enough for developing fixed ∂V_{BL}

Factor 2: Memory size

Factor 3: Cycles prior to first read

Factor 3: Cycles prior to first read

Factor 4: Bitcell parasitics

Inter-storage node capacitance dominates

Higher $C_{Q-QB} \rightarrow$ harder to flip

Ideal bitcell ($C_{Q-QB} = 0$) has lower DWV_{MIN} than extracted one

Static vs. Dynamic V_{MIN}

1 DWV_{MIN} - Aggressive T_{WL} 0.9 0.8 DWV_{MIN} - Margined T_{WI} 0.7 0.6 >^{Z 0.5} 0.4 0.3 Static V_{MIN} 0.2 0.1 0 W.C using Recursive 1kb 100kb 10Mb 5kb Memory Size R Statistical Blockade (Singhee '08)

 DWV_{MIN} dominates Static V_{MIN} if T_{WL} is aggressive

- Background and motivation
- Metrics
 - Dynamic writability metric: T_{WL-CRIT}
 - Dynamic write V_{MIN}: DWV_{MIN}
- Factors affecting DWV_{MIN}
 - WL pulse characteristics
 - Memory size
 - No: of cycles prior to first read
 - Bitcell parasitics
- Effect of Write Assist
- Conclusions

Write assists for improving DNM

Effect of Assists on DWV_{MIN}

WL boost better than V_{DD} lowering for reducing DWV_{MIN}

- Background and motivation
- Metrics
 - Dynamic writability metric: T_{WL-CRIT}
 - Dynamic write V_{MIN}: DWV_{MIN}
- Factors affecting DWV_{MIN}
 - WL pulse characteristics
 - Memory size
 - No: of cycles prior to first read
 - Bitcell parasitics
- Effect of Write Assist
- Conclusions

Conclusions

- Defined V_{MIN} based on dynamic stability for writelimited SRAM.
- Investigated factors affecting DWV_{MIN}.
- Analyzed impact of write assists on DWV_{MIN}.
- Future work
 - Further investigate factors affecting dynamic stability alone.
 - Attempt to determine and model a relationship between dynamic and static metrics and V_{MIN}.

Questions?

BACKUP SLIDES

TABLE II $$V_{\rm T}$$ offsets for static and dynamic write fails

University of Virginia

