Serial Sub-threshold Circuits for Ultra-Low-Power Systems

Sudhanshu Khanna and Benton H. Calhoun ECE Department, University of Virginia

> ISLPED Wednesday, August 19, 2009

Outline

- Ultra Low Power (ULP) Systems and Sub-threshold
- ULP Sub-V_T Systems: Rethink the Topology
- Serial vs Parallel Systems @ Equal VDD
- Serial vs Parallel Systems @ Equal Speed
- Serial Components in Parallel Systems

Ultra Low Power Systems

- RFID tags
- Wireless Micro-sensors
- Implantable, Wearable Medical Devices

Key features:

- Small Form Factor
- Remote, Inaccessible Locations

Thus, must have Long Battery Life => Low E consumption

ULP Systems: DESIGN FOR SLEEP

- Long Sleep Times:
 - 0.25 sec: Heart Rate
 - I Minute: Blood Pressure
 - I Hour: Temperature
 - 1 Day: Structural Health
- Total E = Active E + Sleep E
- DESIGN FOR SLEEP MODE: Focus on Reducing Leakage

Active and Sleep Modes

SLEEP MODE Energy Components: Sleep Mode Leakage Energy = V . I_{Ikg sleep} . Sleep_Time •I_{lkg sleep} -> Sleep Mode Leakage

Lower VDD => Lower Energy, Leakage: Sub-V_T

Strong-Inversion Design:

•High Active E & Leakage

Lowering VDD, Lowers:I•Dynamic Energy ~ V2••Leakage Current ~ exp (V)•

Leakage Reduction:Power Gating

DESIGN FOR SLEEP : Rethink the Topology

ULP systems put a much tighter constraint on leakage.... Much more so than Conventional Digital Systems

ULP Systems need a Small, Less Leaky Topology

Making the Small, Slow Topology Faster

But why more E-efficient even after the VDD increase ?

9

Sub-V_T: Helps Increase Speed @ Very Little Energy-Cost

Sub-V_T: Helps Increase Speed @ Very Little Energy-Cost

Making the Small, Slow Topology Faster

How do we make the Logic System Smaller & Less Leaky ?

Small, Less Leaky Systems: By Lowering System Level Bit Width

- What is System Level Bit Width?
 - Number of bits processed concurrently
 - System Bit Width = 1 => Fully Serial System
- Smaller Bit Width means:
 - Less number of leakage paths
 - But... More cycles needed to finish the same operation

Varying System Bit Widths: Intel 8 bit and ARM 32 bit processors 13

Why Lesser Leakage ?

Lowering System Level Bit-Width

Systems compared:

- 1b SA-1
- 16b KSA-16
- 32b KSA-32

SA : Serial Adder

KSA: Kogge-Stone Adder

1b SA-1

Outline

- Ultra Low Power (ULP) Systems and Sub-threshold
- ULP Sub-V_T Systems: Rethink the Topology
- Serial vs Parallel Systems @ Equal VDD
- Serial vs Parallel Systems @ Equal Speed
- Serial Components in Parallel Systems

Leakage and Delay @ Equal VDD

Serial Systems Help Lower I_{lkg}

Active E @ Equal VDD

Serial Systems help LOWER Active E :

- Almost no glitching
- Super-linear Area saving

VDD = 300mV, data using 22nm PTM

Total E @ Equal VDD

	Total E Consumed (pJ)		
Sleep Time	1b SA-1	16b KSA-16	32b KSA-32
Zero	0.06	0.10	0.10
10us	0.07	0.48	0.96
1ms	2.72	38.10	85.90

Higher the sleep time, higher the benefit of a Serial System

We take $I_{lkg_sleep} = 0.1 * I_{lkg_active}$

19

Outline

- Ultra Low Power (ULP) Systems and Sub-threshold
- ULP Sub-V_T Systems: Rethink the Topology
- Serial vs Parallel Systems @ Equal VDD
- Serial vs Parallel Systems @ Equal Speed
- Serial Components in Parallel Systems

Active & Total E @ Equal Speed

	Total E Consumed (pJ)			
Sleep Time	1b SA-1	16b KSA-16	32b KSA-32	
Zero	0.06	0.10	0.10	
10us	0.21	0.80	0.96	
1ms	14.90	70.50	85.90	
VDD used	350mV	250mV	200mV	

Even at the higher VDD a Serial System has lower: - Active E - Sleep E

Note: Delay kept at 0.1us

Conclusions @ Equal Delay

- ✓ In Sub-V_T, at slightly higher VDD, a Serial
 System becomes as fast as a Parallel System
- Even at the higher VDD, a Serial System has lower Active E & Sleep E

The constraint is that the ENTIRE system must be Serial

Vision of a Fully Serial System

- What's already being done serially?
 - Successive Approximation Register (SAR) ADC
 - Radio / Wireless Communication
- Thus, i/p and o/p are already serial
- Examples of Serial Architectures:
 - Serial DSPs (Distributed Arithmetic, R. Amritharajah, et al, 2005)
 - Serial Architectures used in RFID chips

Serial Components in Parallel Systems

P-S and S-P interfaces will have:

- Active E overhead
- But we still get Leakage Current benefit

32b addition system with 32b KSA

32b addition system with a SA

32b system with a Serial Adder block

Parallel System with a Serial Adder Block:

- Has Higher Active E
- But Helps Save Sleep E

Contributions

- Small Bit-Width systems help save:
 - Active Mode E & Sleep Mode E
 - Can operate as fast as parallel systems by increasing VDD
- In the sub- V_T regime:
 - Simple topologies are more E efficient
 - Speed can be increased by increasing VDD @ little E cost
- Be flexible to "Re-Think the Topology"
 - As "porting" doesn't lead to most E-efficient solution
 - Specially when design constraints change significantly

Thank you for your Time !

Backup slides ahead

ULP applications and Sub-V_{T}

- Energy consumed per operation is minimized with VDD in Sub-V $_{\rm T}$
- As VDD increases:
 - Delay decreases
 - => Leakage energy decreases
 - Dynamic energy increases
 - Total energy demonstrates a minima

Energy, Delay eqns above and below $V_{\rm T}$ are DIFFERENT

Results across a VDD range

Equal Delay vs Equal VDD

At EQUAL DELAY, 1b systems are STILL MORE E efficient than 32b systems, though the benefit comes down from 32x to 5.7x 32

Serial Systems become Pareto-optimal in Sub-V $_{\rm T}$

Pareto-optimal E-D curves across sub-threshold and strong-inversion: (a) active mode energy (b) total energy with 10µs of sleep time.

Below a certain E-D point, 1b system has lesser energy for the same delay

Vision of a Fully Serial System

- Data enters 1b per clock cycle
- Every 32 cycles, a word:
 - Streams through the system
 - Undergoes processing
 - Is Communicated off-chip using the wireless link.

