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Abstract— The design and verification process for SRAMs can
be long and tedious due to the very large multi-dimensional
design-space and the large computational time of Monte-Carlo
(MC) simulations. In this work, we propose a fast analytical
model, which takes into account the supply-voltage, temperature,
process-variations, and array-design variables to characterize
the critical read path and the small signal differential sensing
and then evaluates the read-access failure probability and the
corresponding VMIN and yield. With a low evaluation time
of 15 seconds and <6% error, the model is used to evaluate
∼160K different SRAM designs in 20 hours. The results of the
dataset are used to analyze the effect of key design-variables on
yield and performance, determine inter-variable correlation, and
calculate feature importance. In particular, important statistical
results about sense-amplifier-enable timing and dynamic behavior
of frequency correlation are presented in this work. Thus,
the method can be very useful for SRAM designers to quickly
calculate design feasibility and analyze the design space to
optimize power, area, and speed.

Index Terms— Bit-cell, failure probability, noise margin, read-
access, SRAM, subthreshold, VMIN, yield.

I. INTRODUCTION

RANDOM variations in nano-scale Static Random Access
Memories (SRAM) pose a major challenge to achieving

design robustness due to their large effect on bit-cell and array
characteristics [1]–[3]. These variations include device thresh-
old voltage (VT) mismatch due to random dopant fluctuations
(RDF) and line edge roughness (LER) [4]. The device VT
mismatch in deep sub-micrometer technologies is greatest in
minimum sized devices, which are often used in SRAMs [5].
The worst-case VT mismatch, combined with the increased
sensitivity of current in the subthreshold region, greatly affects
the minimum operating voltage (VMIN) and yield of the
memory. Since the yield and the directly related VMIN para-
meter determine the extent of voltage supply scaling, their
accurate estimation is important for maximizing energy and
performance savings. Monte-Carlo (MC) simulation is a well-
known approach to determine the worst-case VMIN for a given
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memory. However, memory arrays can require millions of MC
simulations, which is prohibitively expensive. Additionally,
the SRAM design space is a multidimensional one, with
variables having interdependent trade-offs and varying levels
of correlation with design feasibility. This includes the SRAM
read critical path which includes the largest number of design
variables. Therefore, it becomes challenging and time consum-
ing to arrive at an optimized design solution. Many analytical
and semi-analytical approaches have previously been proposed
to determine the VMIN and yield of the memory, which we
describe in Section II. While some of these approaches greatly
reduce the simulation time over conventional MC simulations
to help determine design feasibility more quickly, they do not
help to resolve the design space or quantify the statistical
importance of underlying design variables.

In this work, we propose an analytical model that evalu-
ates the read-access failure probability and the corresponding
VMIN. The model takes a large number of variables into
account, including supply voltage, temperature, process varia-
tions, and array design parameters including bit-cell sizing,
read current, bit-line capacitance (number of rows), word-
line rise time (number of columns), sense amplifier strobe
timing, bit-line leakage, and sense amplifier offset voltage. The
method can complete a design evaluation within a few seconds
with small error (<6%).

The following are the key contributions of this work
1. A new analytical time-based relationship describing the

average bit-line discharge rate and its corresponding
distribution.

2. For the first time, analytically describing the read access
operation using Modified Bessel function of the second
kind, which is then approximated with an asymmetri-
cal gaussian distribution with finitely limited skew and
kurtosis.

3. These mathematical developments help the model to
compute the VMIN and failure probability very fast
(∼15 sec) and with low error (<6%)

4. The model is then used to create a dataset (with ∼160K
unique SRAM design points) in 20 hours, which other-
wise would have taken >100 years to generate with MC
simulations. The dataset is then used to observe the effect
of SRAM design variables, quantize their importance and
determine inter-variable correlation.

An SRAM designer who is accustomed to using MC simu-
lation (or a faster equivalent tool) would be able to supplement
their design approach by using this model to analyze the timing
distribution of various components in the SRAM read critical
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path, target the most impactful design variables to save design
time and effort, and co-optimize iteratively for speed, area,
and power using a yield-aware approach.

The paper has been constructed as follows. Section II
discusses the prior methods and approaches to determine
yield, Section III discusses the mechanisms of the SRAM
read-access operation, Section IV describes the proposed read
access yield model and corresponding analysis, and Section V
summarizes and concludes the paper.

II. SRAM YIELD DETERMINATION APPROACHES

The most straightforward approach to determine the yield
of SRAMs is Monte Carlo simulations. In the conventional
Monte-Carlo approach, we try to find the yield for the metric
of interest f (x) with the random variable being x . If ylimit

is threshold for the performance metric, then the pass or fail
function I (x) is defined as

I (x) = I (yi > ylimit ) =
{

1 i f yi > ylimit ,

0 i f yi ≤ ylimit
(1)

And the probability of failure Pf can be defined as

Pf = P (yi > ylimit ) =
∞∫

−∞
I (x)R (x) (dx) (2)

where, R(x) is the probability density function of the random
variable x (e.g. VT)

Since the distribution of I (x) is generally unknown, a large
number of samples are needed to be generated corresponding
to the random variable. To obtain an estimate with (1−ε)100%
accuracy and with (1 − δ)100% confidence, the required
number of samples N(ε, δ) is given by [6]

N (ε, δ) ≈ log
( 1

δ

)
ε2 Pf

(3)

To achieve >95% yield for a 10 Mbit memory, a failure
probability of less than 1e-9 should be reached. To ascer-
tain this probability with 95% confidence interval and 10%
error, more than 1e11 samples would be required, which
is not practically possible. In SRAM circuit design, where
the performance metric depends on multiple variables, deter-
mining I (x) becomes even more challenging due to the
large multi-dimensional design space. Therefore, there is a
need to develop alternate methods to verify SRAM design
yield.

Some of the alternate methods aim to reduce the simulation
time for determining yield by analyzing the impact of process
variations on the SRAM. The work in [7]–[11] use Sensitivity
Analysis to estimate the SRAM failure probability and yield.
This method simplifies the simulation significantly because
only (N + 1) number of partial derivatives with respect to
VT are needed to be evaluated to estimate the sensitivities
(N is the number of independent variables). The partial
derivatives for the six transistor (6T) SRAM cell are shown
in Fig. 1 for a bulk 32nm process. These aid to calculate the
mean (μ f (x)) and standard deviation (σ f (x)) of the distribution

Fig. 1. Partial derivatives with respect to VT using Sensitivity Analysis for
a 6T SRAM cell.

Fig. 2. Importance Sampling using the Mean-Shift approach [12].

as

μ f (x) ≈ f (μx ) +
n∑

i=1

(
1

2

∂2 f (μx )

∂x2
i

)
σ 2

xi
(4)

σ 2
f (x) ≈

n∑
i=1

[(
∂ f (μx)

∂xi

)
σxi

]2

(5)

However, this method can be quite inaccurate, because the
Taylor expansion can yield errors in approximations away
from the nominal point. The sensitivity of the metric with
respect to VT can be highly non-linear in some processes
and for some design points, leading to large inaccuracies.
Additionally, applying this method to large circuits can be
unwieldy, due to the large number of variables involved.

Another method that aids to reduce the simulation time is
Importance Sampling (IS). In one variation of this method,
known as Mean-Shift IS, samples are generated away from
the mean where failures are much more likely to occur as
opposed to the mean of the distribution, where usually no
failures occur [12] (shown in Fig. 2). The Mean-Shift IS,
in which the center of the original distribution p(x) with zero
mean and standard deviation σ j is shifted by a shift-vector
s = (s1, . . . , sM ), is represented as

g (x) =
M∏

j=1

1√
2πσ j

ex p

(
−
(
x j − s j

)2
2σ 2

j

)
(6)
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Fig. 3. Optimization problem in 2D-space illustrating the Most Probable
Failure Point [14].

Then the probability estimated using IS becomes

PI S = 1

N

n∑
i=1

I (xi ) .w (xi ) (xi ∈ G (x)) (7)

where, the weight function w (x) is represented as

w (xi ) = p (x)

g (x)
= ex p

⎛
⎝−

M∑
j=1

s j
(
2x j − s j

)
2σ 2

j

⎞
⎠ (8)

The main disadvantage of this approach is the ambiguity
in determining the shift-vector. This is because it is difficult
to estimate where the failure region might lie. Additionally,
the search region might be too wide and therefore, difficult
to explore with a few number of samples. In another IS
method [13], a mixture of distributions gλ(x) is used to model
the shifted density function.

gλ (x) = λ1 R (x) + λ1U (x) + (1 − λ1 − λ2) R
(
x − s j

)
(9)

where, 0 < λ1 + λ2 < 1. This method enables efficient
sampling without leaving any non-sampled regions in the event
of outliers. Another IS approach improves over mean-shift
IS by using norm minimization to reduce the variance [6].
Still, the overall efficiency of all Importance Sampling meth-
ods depends on the shift-vector because sampling of the
modified distribution function must occur where maximum
number of failure points are likely to occur. This makes it
hard to implement IS based methods to assess the yield of
SRAMs.

Most Probable Failure Point (MPFP) is another method that
is used to evaluate the yield of SRAMs [14]. In this method,
the failure probability determination is treated as a process of
optimization as shown in Fig. 3. It aims to find the worst-case
variations which maximize the failure probability Pf ail .

Pf ail =
6∏

i=1

P
(
�Vti > kiσ Vti

)
(10)

where, ki represents the threshold voltage variation for the
SRAM bit-cell’s transistor’s VT with respect to the standard
deviation at the most probable failure point. In this approach,

Fig. 4. (a) Illustration of the Statistical Blockade (SB), showing the body
and tail in the parameter space. The region inside the body, marked by the
classifier solid line is blocked [15] (b) Steps to perform SB analysis [15].

the search region is divided into a six-dimensional space
(assuming 6T SRAM bit-cell), with sixty-four regions. The
search is then performed in only those regions where failures
are more likely to occur. Although this method is applicable
to large number of cases, even where the failure region might
not be known, this brute-force approach can quickly become
unwieldy as the number of variables increase.

Another method that is used to quickly estimate the
yield of SRAMs is Statistical Blockade. In this approach,
an initial sampling using MC or other sampling methods
is performed to build a classifier for the metric of inter-
est as shown in Fig. 4 [15]. Only points that are beyond
the classifier threshold are simulated, and all other points
are blocked. This allows a huge speed-up of simulation by
only simulating points which are more likely to fail. In an
improved version called the recursive statistical blockade,
the search starts with a lower threshold classifier, which is
then used to estimate a higher threshold classifier multiple
times until the target threshold classifier is reached [16].
This method reduces the simulation time for larger mem-
ories where the regular statistical blockade can become
unwieldy. Although, the statistical blockade method enables
a huge speedup over conventional MC simulations, it can still
require up to sixty hours to determine the yield for a given
design [10].

Some methods reduce simulation time by modelling the
behavior of the SRAM [17], [18]. However, these methods can
still require up to several hundred thousand MC simulations
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for pre-characterization and evaluation. Another method [4]
also models the SRAM behavior, but it has been shown in [7]
that the analytical method presented underestimates the failure
probability.

III. SRAM READ-ACCESS

Read-access time is defined as the time required to generate
a potential difference between the two bit-lines (e.g. 100mV).
If more time is elapsed to generate this voltage difference than
the given word-line pulse width, then the SA might not be able
to evaluate the correct data, thereby resulting in a read-access
failure. The conventional method for determining the read-
access failure probability PA can be expressed as [9], [11],
[19]

PA = Prob
(

TA > T A
W L

)
(11)

where, TA is the read-access time and T A
W L is the word-line

pulse width. TA can be evaluated using

TA =
VDD−�VBL∫

VDD

CB LdVB L

IB L
(12)

where, VB L is the bit-line voltage, CB L is the bit-line capac-
itance, and IB L is the read access current. It has previously
been established that the read-access time TA does not follow
a normal distribution, but 1/T A does [9]. Therefore, the read
access failure probability can be expressed as [9]

PA = Prob

(
1

TA
<

1

T A
W L

)
= 	

⎛
⎜⎝
(

1
TA

)
nom

− 1
T A

W L

σA

⎞
⎟⎠ (13)

Here 	 represents the standard normal cumulative density
function, TA is the access time and, T A

W L is the word-line pulse
width. However, the conventional approach fails to consider
many of the failure mechanisms that affect the read-access
operation. We briefly discuss these mechanisms below.

The method described above considers a pre-defined bit-
line differential voltage threshold point and ignores the sense
amplifier offset distribution. Therefore, this approach considers
an arbitrary worst-case point, which leads to overdesign and
loss of performance. It also does not consider the negative
effect of the bit-line leakage current which reduces the effec-
tive read current for a bit-cell. For a column with N bit-cells,
the effective read current Ie f f is

Ie f f = Iread −
N−1∑
i=1

Io f f −PGi (14)

Ie f f = Iread − (N − 1)μIo f f −PG (15)

Ie f f ≈ Iread − (N − 1) Io f f −PG

(
1 + ln2 (10)

2

(σVT H

S

)2
)
(16)

where Iread is the bit-cell read current, Iof f −PG is ithe access
transistor leakage current, σVT H is the standard deviation of
threshold voltage and, S is the subthreshold slope. The effect
of bit-line leakage is especially great in near-threshold and

Fig. 5. (a) Schematic of the SRAM read-accessed column (b) Timing
Diagram for the SRAM read-access operation [18].

Fig. 6. Comparison between the failure probability evaluated using Monte-
Carlo simulations and the conventional access method highlights the large
error.

sub-threshold regions of operation where the Ion/of f ratio is
severely degraded.

The above method also does not consider the sensing
window, which is determined by the time elapsed between
the word-line enable and sense amplifier strobe enable. This
window of time determines the total time available to develop
a differential voltage on the bit-lines, as opposed to the
word-line pulse width indicated in the method above. The
read-accessed column and the sensing window are shown
in Fig. 5. Small changes in the sensing window can greatly
affect the read-access performance. The timing variations in
both the word-line and sense amplifier strobe signal can
greatly alter the sensing window, which is why it becomes
imperative to consider sensing window variations when assess-
ing the read-access failure probability. Therefore, the above
method fails to capture many of the read-access failure
mechanisms, thereby resulting in an underestimation of the
failure probability. This results in large errors as shown in
Fig. 6.

IV. PROPOSED READ-ACCESS YIELD MODEL

A. Read-Access Model Description and Analysis

The variation in threshold voltage due to Random Dopant
Fluctuations (σV T ,R DF), transistor length variations (σV T ,L),
Random Telegraphic Noise (σV T ,RT N ), and other sources of
variability (σV T ,Other ), which affect stability and performance
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Fig. 7. Sources of variation that affect the read-access operation [18].

of the cell can be modelled as given in [20].

σV T =
√

σ 2
V T ,R DF + σ 2

V T ,L + σ 2
V T ,RT N + σ 2

V T ,Other (17)

For a given technology with given minimum transistor
sizing (Wmin and Lmin), the deviation in threshold voltage
(σVti

) for any transistor can be calculated by using Pelgrom’s
Law [21]. However, advanced technologies exhibit deviation
from Pelgrom’s Law. Therefore, to accurately model VT
variations, we use modified Pelgrom’s Law [22], [23], which
is given as

σVti
= σV T ×

√
Lmin Wmin

(W )α (L)β
(18)

where α and β are technology constants.
The sources of variation which affect the read access

operation are shown in Fig. 7. Process variations in the logic
circuitry path of the word-line signal cause deviations in
timing, which change the time after which the bit-line starts
to discharge, thereby affecting read-access performance. The
word-line logic path timing variations can be analyzed by
modelling it as a chain of inverters. Let μtd and σtd be the
mean and standard deviation, respectively, for the delay of a
minimum sized inverter. For a chain of inverters, the standard
deviation of delay grows as the square root of the number
of stages [24]. If the word-line logic path is modelled as a
chain of q inverters, then the distribution for the delay can be
expressed as ZW L ∼ N

(
μtW L , qσ 2

td

)
. This distribution can

be scaled accordingly with change in inverter sizing [22].
Similarly, the Sense-Amplifier strobe signal (SAE) can be
modelled as a chain of r inverters. Then the distribution for
it can be expressed as ZS AE ∼ N

(
μtS AE , rσ 2

td

)
. Therefore,

the amount of time elapsed between word-line enable and SAE
enable can be modelled as

Zt ∼ N
(
μt, σ

2
t

)
(19)

where

μt = μtS AE − μtW L = r
(
μtd

)− q
(
μtd

) = (r − q)μtd (20)

σ 2
t = σ 2

tW L
+ σ 2

tS AE
= [√

q
(
σtd

)]2 + [√
r
(
σtd

)]2
= (q + r) σ 2

td (21)

Fig. 8. Sense-Amp-Enable distribution with varying inverter chain length
(b) Read Access failure prob. (produced using model) as a function of the
number of SAE inverters across supply voltage.

Alternatively, for a singular inverter chain of length r that
is tapped at different locations to generate the SAE (at r th

inverter) and word-line (at qth inverter; q < r) timing signals,
the distribution can be modelled as

μt = μtS AE − μtW L = r
(
μtd

)− q
(
μtd

) = (r − q)μtd (22)

σ 2
t = (r − q) σ 2

td (23)

The above expressions indicate that the mean of the elapsed
time depends on the difference between the number of invert-
ers in both paths, and the standard deviation depends on
the number of inverters. This means that the uncertainty in
timing can be quite large, thereby worsening the read-access
yield. This effect is shown in Fig. 8 (a), where increasing
the inverter chain length results in greater deviation, which
dampens its intended positive effect. The read access failure
probability as a function of length of the sense-amp-enable
is shown in Fig. 8 (b). As seen in Fig. 8 (b), the failure
probability decreases slowly with increase in inverter chain
length, indicating that sense amplifier strobe signal timing does
not have a very strong impact on yield. A large change in the
inverter chain length is therefore required to achieve a given
yield threshold. The analysis shown in the figure can thus be
very useful to precisely ascertain the sense amplifier strobe
signal timing to meet specific yield targets corresponding to
various memory sizes.

Another method that can be used to generate the SAE
signal is the replica-bit line [25]. In this technique, the sense
amplifier enable signal is generated using replica bit-line
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Fig. 9. (a) Variations in sampling (SAE timing) distribution of the mean with increase in number of samples (ON bit-cells) (b) Variations in SAE signal
timing using various techniques of generation (c) Resultant distribution of bit-line discharge and SAE for various techniques.

capacitance and pre-tied bit-cells. The number of bit-cells on
the replica bit-line define its discharge time and consequently
the SAE timing. The timing for the replica bit-line can be
modelled using the principles of the sampling distribution
as

μt = μtcell

N
(24)

σt = σtcell√
N

(25)

where, tcell is the replica bit-line discharge time for a single
ON bit-cell on the replica bit-line and N is the number of
bit-cells that are turned on. These relationships depict exactly
the opposite trend in variability in comparison to inverter
chain-based techniques in which the variability increased with
increase in number of elements. Another interesting obser-
vation to note about the replica bit-line technique is that
its resultant timing distribution will always tend towards a
gaussian distribution irrespective of region of operation due to
the Central Limit Theorem. This not only makes it easier to
model, but also impedes the far-off outliers as in heavy long
tailed distributions.

The replica bit-line can either be constructed using a short
fractional bit-line with very few ON bit-cells or using a
full array length bit-line with larger number of ON bit-cells.
Fig. 9 (a) shows the effect of increase in number of ON bit-
cells in a replica bit-line on the variations. As the number
of ON cells increase per bit-line, the variations in the timing
decrease. As such, it would be desirable to have a long replica
bit-line with a large capacitive load and a large number of
ON bit-cells to minimize the variations. However, this will
also increase the area and power. Fig. 9 (b) shows the effect
of using a long bit-line and a large number of ON bit-
cells on the SAE timing. As seen in Fig. 9 (b), the replica
bit-line technique nearly halved the variations in the enable

signal in comparison to other inverter chain-based methods,
suggesting its viability in timing sensitive circuits. However,
despite this large improvement, the resultant distribution of bit-
line discharge and SAE sees only a modest improvement due
to no change in the variations of the bit-line discharge of the
accessed bit-line as seen in Fig. 9 (c). The overall improvement
in timing variations using replica bit-line technique is then
observed to be about 15%.

The read performance depends on the variations in bit-cell
read current (Iread ). Since the bit-line discharge rate (Vr )
depends on the read current, the statistical distribution of
rate of bit-line discharge will follow the distribution of read
current [19]. This can be expressed as

σ

μ

∣∣∣∣
Vr

= σ

μ

∣∣∣∣
Iread

(26)

The bit-line discharge rate can be defined as the change
in bit-line voltage per unit time. Its distribution is calculated
based on the supply voltage, array design variables, temper-
ature, and process variations. Although the bit-line discharge
rate is nearly constant at the beginning of the read operation,
it quickly falls as the bit-line voltage reduces further. The
average bit-line discharge rate (αt ) can then be approximated
by the following derived relationship.

αt =
μt∫

0

VD D

μt

⎡
⎢⎣ d

dx

⎛
⎜⎝1 −

tan−1
((

�VBL
�t

)
x
)

lim
x→∞ tan−1

((
�VBL

�t

)
x
)
⎞
⎟⎠
⎤
⎥⎦ (dx)

(27)

Here, (�VB L/�t) represents the initial constant slope
of the bit-line discharge voltage. Consequently, we can
derive the approximated distribution of the bit-line discharge
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TABLE I

SUMMARY OF EVALUATION

rate ZVr ∼ N(μVr , σ
2
Vr

) as

μVr = |αt |
(

1 − (N − 1) μIo f f −PG

μIread

)
(28)

σVr =

∣∣∣∣∣∣∣VD D
d

dx

⎛
⎜⎝1 −

tan−1
((

�VBL
�t

)
x
)

lim
x→∞ tan−1

((
�VBL

�t

)
x
)
⎞
⎟⎠
∣∣∣∣∣∣∣
x=μt

∣∣∣∣∣∣∣
×
(

σIread

μIread

)
(29)

where the read current Z Iread ∼ N
(
μIread , σ 2

Iread

)
follows

μIread = Iread +
n∑

i=1

(
1

2

∂2 Iread

∂V 2
ti

)
σ 2

Vti

+
n∑

k=1

n∑
i=1
i 	=k

∂2 Iread

∂Vti ∂Vtk
r (i, k) σVti

σVtk
(30)

σ 2
Iread

=
n∑

i=1

[(
∂ I read

∂Vti

)
σVti

]2

+ 2
n∑

k=1

n∑
i=1
i 	=k

(
∂ Iread

∂Vti

)(
∂ Iread

∂Vtk

)
r (i, k) σVti

σVtk
(31)

Here, r(i, k) is the correlation coefficient and Vti represents
the threshold voltage of the i th transistor.

The read-access failure probability is the probability of the
voltage differential developed between the bit-lines being less
than the Sense Amplifier offset (VOS). This can be expressed
as

PF AI L = Prob
{
VS Ain < VOS

} = Prob {(Vr · t) < VOS}
= Prob

{
V 


r < VOS
}

(32)

Here, both bit-line discharge rate Vr and time t have been
assumed to have a gaussian distribution. The distribution for

the product of two gaussian variables with zero mean can be
expressed as [26]

PXY (u) =
∫ ∞

−∞

∫ ∞

−∞
e
− x2

(2σ2
x )

σx
√

2π

e
− y2

(2σ2
y )

σy
√

2π
δ (xy − u) dxdy (33)

PXY (u) =
K0

( |u|
σx σy

)
πσxσy

(34)

where δ(x) is a delta function and Kn(Z) is the modified
Bessel function of the second kind. Similarly, for two variables
with non-zero mean, the distribution can be expressed as

PXY (z) = 1

π
K0 (z̄) (35)

where

z̄ =
(

x − μx

σx

)(
y − μy

σy

)
(36)

To solve these equations, we calculate the first two moments
of Q = XY (In context of SRAM, Q represents VS A_in), and
then find a distribution whose parameters match the moments
of Q. We shall derive the moment-generating function for Q,
and show that Q can be approximated by a normal curve.
We previously showed (in Fig. 10) how this distribution is
nearly normal using data based on SRAM functional behavior.
Here, we mathematically derive this approximation and quan-
tify the limits of these assumptions. The moment-generating
function for Q = XY can be written as

MQ (t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

⎛
⎝e

− (x−μx )2

2σ2
x

− (x−μy)2

2σ2
y

⎞
⎠ exytdxdy (37)

MQ (t) =
ex p

⎧⎪⎨
⎪⎩

tμxμy + 1

2

(
μ2

yσ
2
x + μ2

xσ
2
y

)
t2

1 − t2σ 2
x σ 2

y

⎫⎪⎬
⎪⎭√

1 − t2σ 2
x σ 2

y

(38)
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Fig. 10. Interaction of bit-line discharge and sense-amplifier-enable results in a near-gaussian distribution across majority of the small signal sensing operation.
The same analysis also shows that change in sense amplifier strobe signal does not have a very strong effect on the resulting distribution. This trend will be
similar irrespective of region of operation since resultant distribution will always spread in both X and Y directions.

Defining the variables δx = μx
σx

and δy = μy
σy

, and rewriting
the moment-generating function as

MQ (t) =
ex p

⎧⎨
⎩

tμxμy +
(

tδ2
yμxμy + δ2

x

(
2δ2

y + tμxμy

))
2δ2

xδ
2
y − 2t2μ2

xμ
2
y

⎫⎬
⎭√

1 − t2μ2
xμ

2
y

δ2
xδ

2
y

(39)

Although the product of two normal variables is not nor-
mally distributed, the limit of the moment-generating function
is normally distributed [27]. If δ tends to increase, the moment-
generating function tends to

MQ (t) = ex p

{
tμxμy + 1

2

(
μ2

xσ
2
y + μ2

yσ
2
x

)
t2
}

(40)

The corresponding first four moments can then be written as

E (Q) = μV 

r

= μVr μt (41)

V (Q) = σ 2
V 


r
= μ2

Vr
σ 2

t + μ2
t σ

2
Vr

+ σ 2
Vr

σ 2
t

=
(

1 + δ2
Vr

+ δ2
t

)
σ 2

Vr
σ 2

t (42)

γ3 (Q) = 6δVr δtσ
3
Vr

σ 3
t((

1 + δ2
Vr

+ δ2
t

)
σ 2

Vr
σ 2

t

) 3
2

(43)

γ4 (Q) =
6σ 4

Vr
σ 4

t

{
2
(
δ2

Vr
+ δ2

t

)
+ 1

}
((

1 + δ2
Vr

+ δ2
t

)
σ 2

Vr
σ 2

t

)2 (44)

The moments obtained in eqn. (41)-(44) represent the dis-
tribution of the resultant bit-line voltage (V 


r ). This resultant
voltage is input to the Sense Amplifier and should be less
than its offset (VOS) for a successful read. The model is
evaluated and shown in Fig. 11. As seen in Fig. 11, the model
shows near normal behavior in the super-threshold region
with very little error in comparison with distributions obtained
from MC simulations. The error increases in the sub-threshold
region, with the model predicting the failure pessimistically.
The normal probability plot shows a deviation in the right tail
of about 8% when comparing the model and MC simulations
in sub-threshold region. Despite this deviation, the model can
provide insightful results as shown later in section B .

The skewness and kurtosis of the resulting distribution
depend on the value of δ. For small δ, the skewness becomes
large but is always ≤ 2

√
3

3 . The excess or kurtosis is always
≤ 6. As δ → ∞, the skewness tends to zero. As shown
in Fig. 12, the skewness ranges from 0.04 to 0.16 and the
excess or kurtosis ranges from 0.02 to 0.18. These results
suggest that the normal approximation for the product of
variables is very close. The deviation from values obtained
from MC simulations is also small (< 0.6).

The read-access failure probability can be calculated as

PF AI L = Prob
{
V 


r < VOS
}

(45)
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Fig. 11. Comparison of read-access distribution using MC simulations and proposed method in super-threshold and subthreshold regions.

Fig. 12. Comparison of skew and kurtosis evaluated using model and MC
simulations. Evaluation depicts a deviation of less than 0.6 skew and kurtosis
in the worst case.

If Z = VOS − V 

r , then Z ∼ N

(
μVOS − μV 


r
, σ 2

V 

r
+ σ 2

VOS

)

P (Z > 0) =
∫ ∞

0

1√
2π
(
σ 2

V 

r
+ σ 2

VOS

)e

⎛
⎜⎝−

(
z+μV 


r
−μVOS

)2

2

(
σ2

V 

r
+σ2

VOS

)
⎞
⎟⎠

(dz)

(46)

With t = z+μV 

r
−μVOS√

2
(
σV 


r
2+σ 2

VOS

) and using the complimentary error

function,

er f c (x) = 2√
π

∫ ∞

x
e−t2

(dt) (47)

We get,

P (Z > 0) = PF AI L = 1

2
er f c

⎛
⎜⎜⎝ μV 


r
− μVOS√

2
(
σ 2

V 

r
+ σ 2

VOS

)
⎞
⎟⎟⎠ (48)

where the moments μV 

r

and σ 2
V 


r
are shown in Eqn. (41)

and (42) respectively. The yield for a given memory size (N
number of cells) can then be expressed as

Y ield = (1 − PF AI L )N (49)

B. Dataset-Based Dimensional Analysis

To analyze the multidimensional SRAM design space,
the model is used to create a dataset with nearly 160K unique
SRAM design datapoints in a bulk 65nm CMOS technology.
Each datapoint is a set of values of design variables for a given
design and the corresponding failure probability. All design
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Fig. 13. (a) Correlation between various SRAM design variables and failure probability (b) Dynamic behavior of correlation between frequency and failure
probability as a function of separation.

TABLE II

SUMMARY OF DATASET-BASED DESIGN SPACE ANALYSIS

variables are swept across a wide range to generate the
dataset. To evaluate each datapoint using MC simulations
would require ∼5.6 hours (assuming 100K runs), which would
equate to >100 years for a dataset of this size. In com-
parison, the model is able to generate the dataset in about
20 hours as shown in Table II. The results of the dataset
are used to observe the effect of SRAM design variables,
quantize their importance, and determine inter-variable cor-
relation. The results are summarized in a correlation-matrix
in Fig. 13 (a) and arranged in descending order of importance
in Fig. 14.

The frequency is the only variable which spans several
orders of magnitude, and thus, its effect is analyzed separately
across several regions in accordance to its relative magnitude
with respect to the critical path delay. Its correlation with
failure probability is analyzed across three regions, when
clock pulse width � critical path delay, pulse width ≈
critical path delay, and pulse width � critical path delay,
as shown in Fig. 13 (b). The results indicate that there is
weak correlation between frequency and failure probability
when pulse width � critical path delay, suggesting the bottle-
neck in such a case could be the design variables involved

Fig. 14. Importance of various SRAM design variables in descending order.

in the critical path. The correlation peaks when the pulse
width ≈ critical path delay and then falls rapidly when pulse
width is reduced further. This analysis can also explain why
some design points can show little to no decrease in failure
rate even when the pulse width is increased indefinitely.
In such a case, the unoptimized critical path variable(s) might
be causing a high dynamic failure rate irrespective of the
frequency.

C. Evaluation

The read-access failure probability given by (48) has been
evaluated and compared against results from Monte-Carlo
simulations. The MC sims consider the entire read path
including variations in the peripheral circuitry. The resulting
distributions from MC sims are imported into MATLAB and
then used to evaluate the final failure probability. Three cases
with varying sense amplifier strobe timing has been considered
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Fig. 15. Comparison of various yield prediction methods based on speed
and error.

as shown in Table I. The VMIN is calculated for various
capacities (10Kbit to 10Mbit) and their corresponding failure
rate. As seen in Table I, the time required to evaluate the VMIN
is less than 15 seconds in all cases, with low error.

The comparison of various yield prediction methods based
on speed and percentage error is shown in Fig. 15. Based on
this comparison, including the ones shown in Table I and II,
we can observe the method’s convenience and effectiveness
for SRAM design evaluation and exploration.

V. CONCLUSION

In this work, we discussed the major mechanisms which
affect the SRAM read-access operation and the common
evaluation techniques which help to analyze them. The benefits
and issues of various such analytical and semi-analytical
techniques were discussed. To evaluate the read-access failure
probability and the corresponding VMIN, we presented a fast
analytical model which investigates key SRAM read-access
components and analytically models their behavior in the
small signal sensing region of operation. This model takes
into account several variables, such as the supply voltage,
temperature, process variations and, array design variables
i.e. bit-cell sizing, read current, bit-line capacitance (number
of rows), word-line rise time (number of columns), sense
amplifier strobe timing, bit-line leakage, and sense amplifier
offset voltage. Simulations in a commercial bulk 65nm tech-
nology showed that the proposed method is able to evaluate
the failure probability within a few seconds (∼15 sec) with
small error. With this gain in speed over other evaluation
methods, the model is used to evaluate about 160K different
SRAM designs. The results of this evaluation were used
to analyze the multidimensional SRAM design space and
determine the importance of various design variables. This
analysis also provided insightful results about the effect of
operating frequency and sense-amplifier strobe timing on read
access failure probability.

Thus, the proposed model can be very useful for SRAM
designers to quickly calculate design feasibility and analyze
the design space to optimize power, area, and speed.
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