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ABSTRACT | Body sensor networks (BSNs) are emerging cyber–

physical systems that promise to improve quality of life

through improved healthcare, augmented sensing and actua-

tion for the disabled, independent living for the elderly, and

reduced healthcare costs. However, the physical nature of BSNs

introduces new challenges. The human body is a highly dyna-

mic physical environment that creates constantly changing

demands on sensing, actuation, and quality of service (QoS).

Movement between indoor and outdoor environments and

physical movements constantly change the wireless channel

characteristics. These dynamic application contexts can also

have a dramatic impact on data and resource prioritization.

Thus, BSNs must simultaneously deal with rapid changes to

both top–down application requirements and bottom–up re-

source availability. This is made all the more challenging by the

wearable nature of BSN devices, which necessitates a vanish-

ingly small size and, therefore, extremely limited hardware

resources and power budget. Current research is being per-

formed to develop new principles and techniques for adaptive

operation in highly dynamic physical environments, using mi-

niaturized, energy-constrained devices. This paper describes a

holistic cross-layer approach that addresses all aspects of the

system, from low-level hardware design to higher level commu-

nication and data fusion algorithms, to top-level applications.

KEYWORDS | Body sensor networks; channel modeling; CMOS;

sub threshold; wakeup radio

I . INTRODUCTION

Body sensor networks (BSNs) are emerging cyber–physical

systems (CPSs) that have the potential to revolutionize

many aspects of life. Physiological parameters of the human

body can be used for real-time medical monitoring, and
longitudinal data accumulated from many individuals can

help diagnose and treat disease. This information can be

used to augment bodily functions through drug delivery,

augmented sensory stimulation for the deaf or blind, and

support for the movement of prosthetic limbs. The greater

context of the body such as social interactions and location

can also be sensed and fused with physiological data for

improved interpretation and actuation. Overall, BSNs pro-
mise to improve quality of life through improved health,

augmented sensing and actuation for the disabled, inde-

pendent living for the elderly, and reduced healthcare costs.

However, the physical nature of BSNs introduces new

challenges. The human body is a highly dynamic and un-

predictable physical environment that creates constantly

changing demands on sensing, actuation, and quality of
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service (QoS). For example, a BSN application will likely

perform different operations when a person walks, sleeps,

exercises, or has a medical emergency, and will therefore

use different sensors/actuators and will have different re-

quirements on the fidelity, confidence, and latency of data.

At the same time, rapid physical movements of the body

constantly change the network topology, wireless channel

characteristics, and opportunities for energy harvesting.
Thus, BSNs must continuously adapt to rapid changes in

both top–down application requirements and bottom–up

resource availability.

To further complicate matters, the wearable nature of

BSN devices necessitates a vanishingly small size, and

therefore extremely limited hardware resources and power

budget. An example of a currently deployed BSN for the

sick and elderly is the TEMPO device shown in Fig. 1 [1].
TEMPO is a custom inertial BSN developed at the Univer-

sity of Virginia that provides sensing with six degrees of

freedom (three axes of both linear acceleration and rota-

tional rate) and wireless data streaming in the form factor

of a wristwatch. With such a device the most common

feedback from users is to reduce the form factor and ex-

tend the time between battery recharges [2]. BSN devices

should ultimately have extremely small volumes of 1 cm3

or less. Battery energy density, however, does not scale

well down to these sizes. This precludes the use of many

existing solutions that deal with dynamic environments,

such as the protocols used for cell phone communication

today that overpower channel dynamics with conservative

coding and large transmission power. The target size for

BSN devices limits the energy budget to the range of tens

to hundreds of Joules, 2–3 orders of magnitude less than a
cell phone battery.

The main goal of this paper is to present a vision for

BSNs that incorporates principles and novel ideas across

all layers of the system and that are required to meet CPS

challenges. Section II surveys two important aspects of

related work, but this paper is not a comprehensive survey

of BSNs. Section III then presents new principles and

techniques for adaptive operation in highly dynamic phy-
sical environments. This includes a holistic cross-layer ap-

proach that simultaneously addresses all aspects of the

system, from low-level hardware design to high-level

communication and data fusion algorithms. Several open

research questions are highlighted in Section IV.

II . RELATED WORK

CPS challenges for a BSN arise from three domains: appli-

cations, devices, and wireless communication. Section II-A

reviews related work on applications. Device challenges

come from the need for small size and low-power budgets.

Section II-B overviews device hardware related work.

A. BSN Applications
BSNs are used in a growing list of applications includ-

ing fall detection, gait analysis, monitoring the heart with

electrocardiogram (ECG), pulse oximetry, and detecting

Parkinson’s episodes and their severity. Many commercial

products are available. For example, Human Recorder Co.

LTD and LifeSync are two companies selling wireless

ECGs, FaceLake and NatureSpirit are two available pulse

oximeter products, and many companies including Well-
core and Philips sell fall detection products. In keeping

with the holistic theme of this paper, we focus here on a

key cross-layer issue using fall detection as an example.

In BSN fall detection, existing work shows how solu-

tions that expand to include more information from multi-

ple sensors and from higher layers in the system hierarchy

(e.g., context) provide better results. As evidence, consider

that some fall detectors try to detect the fall event by
monitoring thresholds in acceleration. For example, Prado

[3] uses a four-axis accelerometer located at the height of

the sacrum. Kangas [4] studied acceleration of falls and

activities of daily living (ADLs) from the waist, wrist,

and head, and showed that measurements from the waist

and head were more useful for fall detection. Bourke [5]

placed two tri-axial accelerometers at the trunk and thigh

and used upper and lower thresholds for both the trunk
and thigh. Exceeding any of the four thresholds indicated a

fall had occurred. The problem with only using acceler-

ometer thresholds is that other activities such as sitting

down quickly or walking vigorously on stairs also generate

large vertical acceleration, causing many false positives.

By adding information on body orientation from other

sensors, new fall detectors provide a more accurate

Fig. 1. An example of a currently deployed BSN for the sick and elderly is the TEMPO device.
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solution. Noury [6] developed a fall detector BSN consisting
of three sensors: a tilt sensor to monitor body orientation, a

piezoelectric accelerometer to monitor vertical acceleration,

and a vibration sensor to monitor body movements. Noury

[7] also developed a sensor with two orthogonally oriented

accelerometers and used this system to monitor the incli-

nation and inclination speed to detect falls. Li [8] combined

accelerometers (exploiting thresholds), gyroscopes (exploit-

ing postures), and context information (enabling different
thresholds to be used in different settings and postures) to

further improve fall detection, showing a significant

reduction in false positives.

A related application example is using BSNs to identify

individuals at a high risk for falls in order to intervene

before a fall event occurs. BSNs are therefore being de-

ployed to continuously and noninvasively collect gait and

posture data, which can then be analyzed to study the fall
risk mechanisms in various populations and ultimately

identify high fall risk individuals. For example, TEMPO

has been used to classify a Bshuffle[ gait, which is a pro-

minent cause of falls in the elderly, but the natural varia-

bility of gait both within and between individuals

complicates the processes preceding classification, such

as feature identification, selection, and extraction. Thus,

robust and generalized signal and information processing
methods are needed to classify inertial gait data both on-

and off-node. Using data collected on subjects with a

TEMPO node on the right ankle, shuffle gait classification

using information-theoretic feature extraction and neural

networks yielded nearly 98% accuracy of classifying nor-

mal from shuffle gait with as few as two features from a

gait cycle and one measurement location (i.e., ankle) as

training and test vectors [9]. These principles were also
applied to a human subjects study investigating fall risk in

end stage renal disease (ESRD) patients on hemodialysis

(HD), who experience dramatically higher fall rates than

the general population [10]. The study used noninvasive,

portable gait, posture, strength, and stability assessment

technologies (including TEMPO) to extract mobility pa-

rameters known to predict fall risk in the general popu-

lation both pre- and post-HD for inter-HD periods of two
and three days. The results indicated that HD treatment

influenced strength and mobility, and interdialysis period

influenced pre-HD profiles. These results are now being

used to identify ESRD patients on HD who are at higher

risk for falling and target them with interventions speci-

fically designed for this patient population.

These examples illustrate the numerous application-

oriented challenges and opportunities facing BSNs, from
coordinated sensing to information extraction from raw

sensor data. Solutions will require input from domain ex-

perts to ensure that the evolving technologies address the

true application requirements. This is true not only in

medical applications, but also in those targeting fitness and

entertainment. With the proper coordination between

BSN technology development and emerging application

requirements, BSNs are well positioned to deliver the bio-
feedback and interactivity necessary for the applications of

the future.

B. Hardware for BSNs
In this section, we review existing BSNs built from

commercial-off-the-shelf (COTS) parts and custom de-

signed application specific ICs (ASICs) and discuss their

limitations and strengths.
COTS BSN nodes generally consist of separately pack-

aged components integrated onto a printed circuit board

(PCB). These COTS designs are often based on general

wireless sensor network (WSN) motes and share charac-

teristics of general sensor nodes. However, BSN design

requirements differ distinctly from WSNs, so BSN nodes

largely based on WSNs exhibit inefficiencies, most notably

in power consumption. Most COTS platforms include
sensors, a front end analog amplifier, a digital filter, a

microcontroller, a battery, a reference oscillator, and a

radio transceiver. COTS nodes provide solid development

platforms that are flexible and easy to build, granting rapid

access to prototypes and offering programmability to faci-

litate changing application requirements, processing algo-

rithms, measurement methods, and communication

protocols. For this reason, COTS-based platforms are ideal
for the development of accurate data acquisition ap-

proaches and for clinical data collection. The form factor

of COTS-based platforms can be small (volume G 1 cm3,

weight G 100 g [11]) and wearable, using either skin

mountable [12] or Velcro chest strap designs [13], although

many COTS nodes remain several centimeters on a side.

Their energy inefficiencies may ultimately limit the full

deployment of COTS designs in a wide range of emerging
healthcare applications, as it is difficult to prolong the

battery lifetime of a COTS platform to much more than

one day [14], [15].

Many COTS nodes employ Bluetooth, Zigbee, or other

radios commonly seen in WSN motes. A survey across

different platforms shows that the 868-MHz unregulated

band [14], [16] and the 2.4-GHz band [15] are popular for

COTS platforms, since they provide easy integration with
the larger system. The power consumption of these radios

makes the COTS node power alarmingly high, often reach-

ing the several 100-mW range [11], [16], [17] (500 mW for

[17]). Use of these radios, while convenient, supports data

rates that dramatically exceed the requirement for most

BSN applications. The frequency of physiological signals

typically range from the 1 Hz to hundreds of kilohertz

range [11], and data rates in transmission and receiving
typically only range up to hundreds of kb/s [14], [17]. A

more suitable radio would help to reduce the power of

COTS nodes, but convenience seems to trump power as

the parameter influencing radio choice in most existing

COTS designs.

Nonradio components do not affect the overall COTS

power consumption significantly [14]. Instead, the selection
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of other components such as the analog front end and
microcontroller focus on accuracy of measurement, quality

of attained signals, noise rejection, and flexibility of

programming. For example, Wong [16] employs Micro-

chip’s 5 V PIC processor and Ong et al. [12] and Kony et al.
[17] use TI’s 3.6 V MSP430. Few developers of COTS nodes

discuss attempts to improve the energy or power efficiency

in on-node computation or control logic. The analog front

end and sensors also employ advanced industry compo-
nents for their accuracy and noise rejection [13], [16]. This

design strategy is typical of COTS BSN nodes, as their main

focus to date appears to be attaining clinical quality signal

processing to assess the methodology being explored and

prototyped on the node.

With the power problem becoming increasingly identi-

fied as a major bottleneck, power and energy modeling

techniques will aid in power optimization methods. With
careful optimization, COTS platforms can achieve self-

sustained, autonomous operation with an energy harvester.

For example, Penders et al. [18] were able to accomplish a

15-fold power reduction from 7.1 mW to 450 �W by opti-

mizing knobs from the application, system, and hardware

levels, despite having a general COTS architecture such as

incorporating a COTS microcontroller and radio. In rare

cases, harvesting can provide this much power.
In summary, COTS-based designs are characterized by

easily programmable components focused on delivering

high-quality clinical data. Most COTS designs use simple

architectures with little to distinguish them from WSN

nodes, which reflects designers’ focus on utility with

low-power design as a secondary concern. COTS radios

dominate node power and are over provisioned for BSN

applications, pointing to the need for using lower power,
domain-specific radios and employing system level

methods to reduce the contribution of radio power to the

total. Battery lifetime in COTS designs is still too short

(�1–3 days) to allow for widespread deployment of these

nodes across the full spread of BSN applications.

ASIC-based BSN chips swing to the other end of the

spectrum from COTS designs. These custom nodes are

application specific instead of flexible and generic, which
follows naturally from the need for excellent efficiency to

extend system lifetimes. Custom BSN chip design is still an

emerging field, and the number of complete systems in the

literature is limited. One reason may be that a complete

BSN node requires optimized blocks that each require

unique expertise to develop efficiently. An implantable

0.5� 1.5� 2 mm3 intraocular pressure sensor in [19],

designed to provide continuous feedback for glaucoma
treatment, incorporates a solar cell, a microelectromecha-

nical system (MEMS) pressure sensor, and a microbattery

with a low-power system on chip (SoC). The chip converts

the capacitive output of the MEMS sensor to a digital value

with a 3.6-V, 7-�W switched capacitor circuit, and an 8-b

0.4-V, 90-nW, 100-kHz microcontroller stores the data in

a 4-kb SRAM. An frequency shift keying (FSK)-based

transmitter sends 1-b 40-mW bursts every 131 �s. With
> 10 h of indoor light a day and measurements less than

every 15 min, the node can run perpetually from harvested

energy.

A glucose sensor on a chip with a wireless transmitter

is integrated with a contact lens for diabetes monitoring in

[20]. The sensor is inductively powered by a reader held

near the eye, communicates with a 2.4-GHz load shift

keying (LSK) scheme, and consumes less than 3 �W. It
utilizes a sub-�W regulator and bandgap reference. The

degree of energy autonomy shown in these two designs is

ideal for BSNs, and both designs show how block-by-block

optimization and limited flexibility can lead to impressive

energy efficiency and miniaturization.

An ECG system in [21] combines a sensor chip housing an

analog front end and analog-to-digital converter (ADC) with

controller chip that is integrated onto a flexible band
covering most of the chest. The band inductively powers the

sensors, which adhere to the body in small disposable

bandages underneath the chest band. Each ECG sensor chip

[22] consumes an average of 12 �W for the analog front end,

clock generation, regulator, and ADC, and the controller

chip uses 5.2 mW (for aligned inductors) while powering a

sensor and processing the ECG signal [21]. Both the power

consumption and design complexity are dominated by the
analog circuits for sensing and communication.

These same trends of application focus and extreme

optimization emerge in custom components for BSN use. A

processor and timer targeting low duty cycle sensing in [23]

optimizes sleep power down to below 30 pW and only uses

�300 fW during active operation at 106 kHz. In another

design, a programmable analog front end for biomedical

signals in [24] integrates clock generation, tunable filters,
and a 12-b successive approximation register (SAR) ADC to

produce digitized output samples. The chip consumes

895 nW when acquiring raw ECG data through the front end.

So far, few ASIC nodes leverage system level require-

ments to reduce power in the radio or analog blocks,

instead following the COTS lead by focusing on extracting

and communicating raw data. There are a few exceptions.

For example, a mixed signal SoC integrating an analog
front end and ADC with an 8-b PIC processor operating in

subthreshold [25] leverages 700-nW processing to reduce

the burden on the system radio (not integrated on this

chip). The processor uses only 1.5 pJ/instruction at

280 mV and 450 kHz, and it can extract instantaneous R-R

heart rate intervals from a raw ECG sampled at 1 kHz.

Transmitting this information instead of raw ECG reduces

the wireless data rate by 500X. Also, the processor can
successfully maintain accurate computation of heart rate

even when it reduces the bias currents in the input am-

plifier and ADC, causing those analog components to

suffer in terms of their block level parameters but per-

mitting the system to function with high fidelity. This

allows the full analog front end, ADC, and digital power to

drop to only 2.6 �W during heart rate extraction and raw
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ECG acquisition [25]. Similarly, the EEG processing node

in [26] includes an analog front end, ADC, and processor

for feature extraction. The �4.3-�W power of the chip is

dominated by the 3.5-�W instrumentation amplifier. Using

the chip in combination with a ChipCon radio shows that

on-node feature extraction saves 14X system power by

reducing the communication load.

Since radios consume so much power when they are
active, moving to lower power radio designs is important.

Recent low-power radios and wake-up radios [27], (re-

ported in the IEEE Journal of Solid-State Circuits (JSSC),

the International Solid-State Circuits Conference (ISSCC),

and the Symposium on Very Large Scale Integration (VLSI)

Circuits) tend to target data rates between 100 and

200 kb/s. They typically use the 2.4-GHz industrial,

scientific, and medical (ISM) or 1.9-GHz personal com-
munications service (PCS) bands, use simple modulation

schemes such as on–off keying (OOK), report sensitivities

from �60 to �80 dBm, and consume between 50 and

100 �W. Power for these radios appears to be independent

of data rate but proportional to sensitivity. Fig. 2 shows that

a 10� increase in power leads to roughly a 100� increase in

sensitivity. This implies that lower sensitivity radios can

offer much lower power, but lower sensitivity may limit
communication to periods with better channel character-

istics, which is a motivation for the adaptive techniques we

describe later in this paper.

In summary, initial forays into custom design for BSN
nodes show that extremely energy-efficient designs are

possible when the hardware is tailored to a specific appli-

cation and heavily optimized. We observe that opportuni-

ties for additional substantial energy savings may be

possible by using application requirements at higher levels

in the design hierarchy to adjust how the hardware ope-

rates. This indicates the potential benefits of supporting

ultralow-power (ULP) processing and different power
modes that can adjust energy consumption of the hardware

as application needs vary.

III . NEW PRINCIPLES AND TECHNIQUES

Current research is underway to develop a combination of

software and hardware principles and architectures that

span from a new SoC-based BSN platform to the applica-
tion layer in order to provide an energy-efficient solution

for body sensors that adapts to the CPS challenges of a

highly dynamic environment. Building an efficient CPS

system for this type of application requires that we analyze

issues at every layer of the hierarchy and then iterate to see

how the issues and requirements at one layer influence

other layers. We have undertaken this exercise, and in this

section, we propose a hardware platform that we believe
contains features important to optimizing the system as a

whole. Starting at the hardware level, Section III-A de-

scribes the SoC hardware platform, which will have three

unique architectural aspects identified from our cross-

hierarchy analysis to reduce energy usage: 1) an asym-

metric radio architecture that uses different bands and

modulation for uplink and downlink, 2) low-voltage ICs

and hardware accelerators for ULP, adaptive computation,
and 3) a low-power receive-only wake-up radio that is

highly tuned to the global system for mobile communica-

tions (GSM) synchronization symbol, for high-accuracy,

low-power time synchronization.

To maximally exploit this architecture, we identify

three cross-layer approaches to enable adaptive, resource-

efficient operation 1) creating new networking protocols

and data fusion algorithms that exploit the asymmetric,
full-duplex radio architecture for adaptive, efficient

distributed operations in dynamic wireless environments

(Section III-B), 2) modeling and predicting the wireless

channel based on a combination of low-level cognitive

radio techniques and high-level contextual information

about the physical world (Section III-C), and 3) creating

an integrated framework for sensing, coding, and signal

processing to adaptively balance top–down QoS de-
mands and bottom–up resource and energy availability

(Section III-D).

A. An Ultralow-Power BSN Platform
The extreme energy and form factor constraints of

wearable BSN devices necessitate a fundamental departure

from the traditional design of wireless embedded sensing

Fig. 2. State-of-the-art low-power radios and wake-up radios.

Power is independent of data rate but roughly proportional to

sensitivity with a floor of about 50 �W.

Calhoun et al.: Body Sensor Networks: A Holistic Approach From Silicon to Users

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 95



devices. Fig. 3 illustrates the energy profile of a typical
wireless embedded platform today, excluding sensor

power: wireless transmission and reception consume the

most energy, followed closely by computation. What is

required is a new BSN hardware platform to directly ad-

dress the dominant energy consumers using a custom SoC

design that incorporates several key innovations: asymme-

tric radio-frequency (RF) communication (to best account

for data transfer profiles), adaptive low-energy hardware
(to adjust to changes in the BSN mode or environment),

and synchronization from existing infrastructure (to re-

duce RF receiver energy during synchronization). This

unique architecture is expected to reduce total energy

consumption by 1–2 orders of magnitude over existing ar-

chitectures. The basic SoC architecture is illustrated in

Fig. 4. A programmable microcontroller provides the heart

of the hardware system and interfaces with I/O, memory,
and optional hardware accelerators. It also interfaces with

an asymmetric radio that uses different bands and modula-

tion for transmission and reception. The receiver can

double as a clock harvester, and a digital delay locked loop

(DLL) helps the chip to remain locked to an external,

harvested GSM strobe signal even when that signal be-

comes temporarily unavailable. On-chip voltage regulation

allows the operating voltage to be adjusted to meet energy
and performance demands. External energy harvesting

mechanisms (like thermal gradients) can be added by in-

cluding a voltage boost regulator. The specific details of the

SoC architecture would be tuned for the needs of each

BSN application, but the illustration in Fig. 4 represents a

basic template that captures the major features of an

energy-efficient hardware platform.

1) Asymmetric Wireless Communication: The radio archi-

tecture is based on two key observations about BSNs. First,

BSNs typically use a star-network topology in which the

central hub (e.g., a cell phone) typically has more energy

resources when compared to the remote nodes, which may

be severely energy constrained. Second, the requirements

on data rate for communication from sensor node to con-

troller (uplink) are higher than those from controller to
sensor node (downlink) because the uplink carries the

sensed information (data), while the downlink may carry

configuration instructions or similar, low-bandwidth

information.

The system uses separate RF strategies for uplink and

downlink that are optimized for these asymmetric energy

budgets and data rates. Narrowband radios designed to

communicate over a range that is less than 10 m typically
have equal power consumption in transmit and receive

modes [28]. Contrast this to pulsed-ultrawideband (UWB)

radios where the transmitter power is typically 100� lower

than the receiver power [29]. Furthermore, the energy per

bit of UWB transmitters is typically around 50 pJ/b, com-

pared to 25 nJ/b for Bluetooth [28], and UWB energy per

bit is independent of the data rate, as shown by the plot of

recent UWB transmitter publications in Fig. 5. UWB re-
ceivers, on the other hand, typically consume 1–10 nJ/b.

UWB is, therefore, suitable for transmission from the

energy-constrained node, but not necessarily for reception.

Low-power narrowband radios can typically achieve lower

powers than UWB receivers, and therefore are suitable for

reception on the node. The potential energy savings of

using a UWB transmitter and a low-power narrowband re-

ceiver relative to Bluetooth are illustrated in Fig. 6. This

Fig. 3. Comparison of energy consumed per bit broken down by

task in a wireless sensing node using current state-of-the-art

hardware [28], [51], [52].

Fig. 4. Template for SoC that includes asymmetric RF, programmable ULP processing, and scavenging synchronization signals to

reduce energy consumption.
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allows the node to communicate while using the least

amount of resources, at the expense of an acceptable in-

crease in power consumption of the access point.

Furthermore, the signal transmitted from the node can

be used to measure the channel quality, as discussed in

Section III-C.

2) Adaptive Hardware for Low Energy Computation: Two
ULP techniques can be used to reduce the energy

consumption required for on-node computation and signal

processing: 1) hardware accelerators and 2) low-voltage

circuit operation. By reducing the energy of on-node

computation, this architecture will expose new energy and

latency tradeoffs between transmitting raw data and using

onboard compression or feature extraction.

A hardware accelerator uses a dedicated circuit to im-
plement a specific function, sacrificing functional flexibil-

ity in that component for a 1000� reduction in energy

consumption compared to a general-purpose microcon-

troller [30]. Low-voltage and subthreshold circuit opera-

tion maintains functional flexibility and reduces the

energy consumption by over 10� compared to operation

at the normal voltage [31]. Fig. 7 shows example savings for

fast Fourier transform (FFT) hardware and central pro-
cessing units (CPUs) in terms of both energy and CPU

cycles. In prior work, successful subthreshold ICs that im-

plement logic [31], memory [32], and complete microcon-

trollers [25] as well as systems that adapt energy

consumption by moving in and out of subthreshold [33]

were demonstrated. In the future, it is necessary to analyze

the processing requirements for different BSNs and devel-

op policies for deciding when to apply low-voltage circuit

techniques based on the impact for total energy consump-

tion of the system. New research into context-sensitive
algorithms will determine how much on-node processing

makes sense for a given application, and how that infor-

mation can be combined with simulations of hardware

energy consumption to identify specific sections of the

processing that are best implemented using hardware ac-

celerators. For example, control algorithms will likely re-

main on the microcontroller, but data processing routines

(e.g., compression, FFT, etc.) may be best suited for hard-
ware acceleration. In cases where processing energy re-

mains negligible relative to communication, hardware

acceleration is unnecessary. In cases where large amounts

of processing increase the computation energy substan-

tially, hardware acceleration can be used, and it is also

possible to apply low-voltage circuit design techniques to

minimize energy consumption (e.g., [31]).

3) Low-Power Time Synchronization Harvesting: Time

synchronization can allow nodes to reach ultralow duty

cycles while still successfully communicating at predeter-

mined rendezvous times. However, the reduction of total

system energy is limited by clock drift: nodes must perio-

dically resynchronize over the wireless channel, causing

energy overhead. The energy overhead of synchronization

is amplified in energy-starved BSNs, where nodes often go
long periods with their wireless radios off in order to con-

serve energy. Synchronization energy overhead has been

generally recognized as a critical factor in sensor networks,

and efforts to reduce the synchronization time for nar-

rowband [27] and UWB [34] radios have been presented.

Most notably, a synchronization strategy using a 52-�W

wake-up receiver has been reported, where a wake-up

beacon signal generated within the network is used for
coarse synchronization of the nodes [27].

Fig. 5. Recently reported UWB transmitters show constant energy

per bit over a wide range of data rates.

Fig. 6. Our proposed asymmetric receive and transmit strategy saves

50� and 500� energy per bit over conventional RF strategies.

Fig. 7. Hardware accelerators and low-voltage digital circuits

dramatically reduce the energy relative to existing on-chip

computation.
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An alternative to using wake-up radios to synchronize
BSNs is to extract timing signals from one of the ambient

wireless signals visible to the BSN. We refer to this as clock

harvesting, and the advantage is that the high-power wake-

up signal is not generated by an access point in the net-

work, but rather is harvested from some other source. For

this purpose, we have developed a clock-harvesting re-

ceiver (CRX) [35] that synchronizes BSN nodes based on

an external GSM signal. The CRX extracts a 21-Hz signal
embedded within every broadcast channel of the GSM

mobile phone standard.

GSM was selected as a wake-up source because it pro-

vides a pervasive and practical signal for use in a BSN.

Every GSM cell contains a high-power broadcast channel

operating at a fixed frequency. Indoor measurements in a

university building show the received power of this chan-

nel ranges from �65 to �95 dBm. Embedded in every
broadcast channel transmission is a tone burst sent perio-

dically for synchronizing cell phones. This signal may be

extracted with a low-power receiver, and used to syn-

chronize the reference clocks of BSN nodes. Fig. 8 shows a

block diagram of a CRX to extract this signal. An off-chip

surface acoustic wave (SAW) filter selects the 1900-MHz

PCS band. The input is amplified and downconverted to an

IF of 250 kHz, then split into two paths, each with Gm-C
bandpass filters that select the tone burst signal. The

outputs of the filters are envelop detected and compared,

generating a digital clock output from the GSM signal.

Fig. 9 outlines the operation of the receiver in time.

The GSM broadcast primarily transmits Gaussian

minimum-shift keyed (GMSK) data. Approximately every

46 ms, a pure sinusoidal tone is transmitted. This tone

burst lasts for 577 �s at an offset frequency of 67.7 kHz
from the center of the channel. The filter stages in the CRX

determine when this frequency burst is present by tuning

them to overlapping halves of the broadcast channel.

When data are transmitted by a GSM cell, power is spread

over the entire channel, passing equal signal levels through

each filter. During a tone burst, however, the signals

captured along the two filter paths differ. This difference is

then detected by the comparator.
A prototype CRX was fabricated in a 0.13-�m comple-

mentary metal–oxide–semiconductor (CMOS) process

and operates from a 1-V supply. The low-noise amplifier
(LNA) can be tuned over a frequency range covering the

1900-MHz band, enabling the selection of any broadcast

channel in the United States. The measured clock error

rate (CER), defined as the number of clock errors to the

number of correct clock outputs, is 10�3 at an input power

level of �87 dBm while the power consumption of the

CRX is 126 �W. Proper operation was verified at input

powers up to �5 dBm. The measured jitter at peak sensi-
tivity is 57 �s, but this reduces to 2 �s at higher input

powers. In sleep mode, the leakage power of the CRX is

81 pW. This CRX was specifically designed with a low

sleep mode power to enable a hierarchical synchronization

strategy. This allows the CRX to be coarsely duty cycled by

a low-accuracy timer, and fully powered only momentarily

around the 21-Hz GSM clock edges.

B. New Network Protocols and Distributed Data
Fusion Algorithms

Numerous wireless protocols and sensor fusion algo-

rithms have been designed for networks of low-power em-

bedded devices, including neighborhood-based in-network

processing [36], centralized aggregation [37], mobile
agents, and automatic program decomposition [38], among

others [39]. However, the BSN hardware platform de-

scribed above has several unique characteristics that

preclude these or other existing techniques. First, the

asymmetric radio architecture eliminates a basic primitive

for wireless communication: the broadcast channel. This

will affect protocols at all layers of the network stack that

rely on channel sensing, broadcast messages, eavesdrop-
ping, and/or direct neighbor-to-neighbor communication.

Second, the new platform has a very different resource and

energy profile than existing platforms, which will change the

design space of efficient BSN applications and protocols. For

example, the cost of receiving is an order of magnitude higher

than the cost of transmitting, which poses challenges for

traditional medium access control (MAC)-style channel
Fig. 8. Block diagram of the clock-harvesting receiver that captures

a 21-Hz reference clock from the GSM broadcast channel.

Fig. 9. Time response of a frequency burst from a GSM tower and

the corresponding clock output of the CRX.
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arbitration and limits the use of link-layer acknowledge-
ments (ACKs) for reliable delivery and flow control.

Novel low-power networking protocols and data fusion

algorithms are required for BSNs using a holistic approach

that percolates the unique characteristics of the BSN plat-

form all the way up and down the application stack. For

example, the potential for full-duplex master–slave commu-

nication can be used to perform out-of-band coordination

between neighboring nodes and to produce an emulated
broadcast channel when necessary. These wireless primitives

can be used to design a suite of network protocols for

network discovery, transmission scheduling, and algorithms

for leader election and the efficient calculation of aggregate

statistics over a group of nodes can be developed. The end

result is a catalog of cross-layer protocols and algorithms that

jointly optimize the costs and needs of sensing, data fusion,

communication, and clock synchronization.
Once this catalog is created, the system will use new

techniques to adaptively tune the algorithms and dynam-

ically switch between algorithms and protocols based on

the properties of a given application and the current ope-

rating conditions. These techniques will use both top–

down contextual information as well as bottom–up

resource information. For example, changes in heart rate

or blood oxygen levels may not be a concern if the user is
exercising, but could be a concern if the person is driving

or has suddenly fallen. Top–down information that the

user is stationary (sleeping or in a vehicle) will lead to the

use of algorithms and protocols tuned for low-power steady

state operation, such as time-synchronized sensing and

rendezvous-based communication. On the other hand, the

context of bodily motion (walking or running) will lead to

the use of algorithms tuned for rapid topological changes
and high channel dynamics, such as active neighbor dis-

covery, channel monitoring and prediction, and delay-

tolerant networking. High-level bodily location, motion,

and activities may also indicate the increased availability of

energy harvesting and/or the availability of known network

resources such as a cell phone or access point. This infor-

mation can be used to trigger batch operations such as the

upload of data logs, or the creation of high-fidelity data for
periodic sensor calibration.

New data fusion algorithms must also be used to ex-

ploit application logic and top–down sensing requirements

to reduce total system energy through strategic data col-

lection. The value of the data from one sensor may depend

on the data from another sensor. For example, sensors that

detect physical activity for diabetes may not be necessary if

blood sugar levels have been detected to be normal. In
these cases, the data fusion algorithms can automatically

order the sensing and data processing to avoid using un-

necessary sensors, increasing communication and data

fusion but reducing total energy consumption. Thus, true

bidirectional information flow is necessary: sensor data are

necessary to detect the situational context, and the context

can be used to decide which sensors should be used.

C. Exploiting Periodic or Predictable
Wireless Channels

One key aspect of the physical BSN environment is that

bodily motion will create bounded dynamics in the wire-

less channel due to bodily occlusions and the changing, but

bounded, proximity of devices attached to the body. This

hostile RF environment can be handled by predicting and

dynamically adapting to current wireless channel condi-

tions, rather than reacting to them. The cost of supporting
dynamic adaptation (e.g., by local processing) will be small

relative to the savings provided from reduced wireless

communication overhead from, for example, dropped

packets or unnecessarily strong coding or transmission

power. In order to realize these energy savings, cross-layer

approaches to channel prediction and adaptation should

incorporate both top–down context about user and

bottom–up channel sensing information.
The foundation for a channel prediction scheme can be

a set of systematic experiments for BSN channel charac-

terization. Preliminary experiments show high variation in

the received signal strength between nodes at different

locations on the body (Fig. 10), and many other BSN

channel modeling experiments corroborate these results

[40]–[42]. Two generalized measurement setups for both

narrowband (900 MHz and 2.4 GHz) and UWB commu-
nication are most prevalent. The first method collects data

using a vector network analyzer measuring S21 between a

transmitter on the body and a receiver (e.g., [41]). The

second method records a received signal strength indicator

(RSSI) or a link quality indicator (LQI) of a signal at a

given sampling frequency (e.g., [40]). Path loss models are

generated using curve/distribution fitting while second-

order statistics such as amplitude distribution, level cross-
ing rate, and fade duration are measured as well [41].

Distributions such as lognormal, Rayleigh, Weibull, and

Gamma are all found to be a best fit in certain situations,

but the most common fit is lognormal.

Due to the rhythmic nature of a body’s motion, channel

periodicity is observed when test subjects are walking,

running, or even trying to stand still [42], [43]. Channel

Fig. 10. Receive power between nodes for varying positions

using 2.4-GHz radio (�12-dBm TX).
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periodicity is seen in the collected data and its impact is

reflected in the distribution models. However, these mod-

els do not provide insight into the impact of normal, un-

controlled movements on the shape and frequency of the
channel. Fig. 11 reports LQI data recorded using Motorola

wireless sensor nodes in the 2.4-GHz band. The dark blue

line shows control data taken using a mechanical slider on

a track, simulating someone’s arm swinging at a constant

rate while walking. The time domain data show a relatively

consistent periodicity which results in the expected log-

normal probability density function to its right. The red

line in Fig. 11 is 3 min of LQI data taken while a subject
was working at an office desk with a transmitter on the

right wrist and a receiver at the left hip. Unlike most

channel modeling experiments, the person in this test

was not instructed to sit still. Due to the typical, random

movement of the person during the 3-min test, the channel

model shows variation, but not the repetitive and predic-

table motion of the control setup. This is again reflected in

the distribution to its right, but the bimodal nature of the
data makes a lognormal fit inaccurate.

Real-world scenarios like the red line in Fig. 11 moti-

vate the need for an advanced channel modeling method

beyond distribution fitting. This measurement illustrates

that there may be long periods of time when the channel is

exceedingly good, and a low-power radio with poor sensiti-

vity is sufficient for communication. There are also long

periods of time when the channel is exceedingly bad, and
wireless transmission should not even be attempted. The

periodic channels from bottom–up channel measurements

depend on the top–down context, including movement,

activities, and locations. Therefore, predictive channel

models can be generated within a BSN by combining

bottom–up channel measurements (e.g., a history of RSSI

data) with top–down context information (e.g., a person is

sitting versus walking).
Once the predictive channel models are created, tech-

niques to collect both top–down and bottom–up informa-

tion for channel prediction can be developed. The BSN

sensors can be used to detect body context, motion, and

activities. The use of this information in predicting chan-

nel quality can be considered when deciding whether sen-

sor data should be stored, compressed, or reported to the
BSN hub node. For bottom–up channel sensing, the hub

will sense the quality of each node-to-hub channel. For

example, a known preamble could be transmitted prior to

each data packet that allows the receiver to measure RSSI,

which provides the information to assess the quality of

the link.

Once sufficient history of the channel quality is known,

and a short-term future channel quality predicted by the
BSN hub, the predictions must be sent to the relevant

nodes via the asymmetric downlink. The rate at which

nodes are updated can be determined by the BSN hub, and

the estimate for next channel prediction can be included

with the prediction itself, when possible. The mechanisms

for making channel predictions should use both top–down

context and bottom–up channel sensing. For example,

history could be collected on channel data and used to
predict future link quality. If the channel quality should

get better or worse before the next update, the coding rate

may become too high or low, bringing an unnecessary cost

of lower data fidelity or lower packet success rates, respec-

tively. Conversely, a highly dynamic channel is likely to

remain so, such as a body area channel when the wearer is

walking or running. In such a case, a node can either

receive more frequent updates, leverage periodicity in the
channel quality, or use conservative coding techniques as a

function of the worst case channel conditions. To maxi-

mize performance, a decision-theoretic framework can be

used that weighs the balance of conservative channel esti-

mates versus the cost of increased update rates. These

decisions will be based not only on performance charac-

teristics, but also on current and future QoS requirements

at the application level.
Once a node has been notified of its predicted channel

quality, it must adapt the communication parameters.

These adaptation schemes should involve high-level

Fig. 11. Measured LQI on a controlled track (dark blue), and when sitting at a desk (red), with corresponding histograms.
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network protocols and distributed data fusion algorithms,
as discussed in Section III-B. In situations where a

constant packet transmission rate must be maintained,

adjusting coding rates based on channel quality would

affect data processing output rates and, as discussed in

Section III-D, the resulting data fidelity. This competing

relationship is central to the cognitive adaptation of a node

to its channel condition.

Regardless of the application requirements and operat-
ing environment for a given system, it is possible to use a

buffer [e.g., first-in–first-out (FIFO)] between the data

processor and the code generator to manage these relation-

ships. The processor pushes data into the buffer at its data

processing output rate, and the code generator pulls it out

based on its coding rate. It is desirable to maintain a specific

buffer occupancy set-point throughout operation. There-

fore, if the channel quality update results in a coding rate
increase to maintain a high packet success rate across a bad

channel, the rate at which data are pulled from the buffer

will be reduced, forcing the processor to reduce its data

processing output rate. Conversely, if the data processing

output rate should increase based on the dynamic input

data, the increased buffer occupancy would need to be

placated by a reduced coding rate, potentially reducing the

packet success rate. An overarching node controller would
need to manage such a competition. Such policies could be

incorporated into node-level operating systems, such as the

PixieOS for wireless sensor networks [44].

D. Adaptable Sensing, Coding, and Signal Processing
The ultimate efficacy of a BSN application is dependent

on the fidelity of the collected data, but the collection and

wireless transmission of this data pose the greatest chal-
lenges for achieving the battery lifetimes required by the

same applications. It, therefore, becomes necessary to

model the relationship between energy consumption and

fidelity in a way that enables system designers to select

sensing, coding, and processing modes that best achieve

the desired tradeoff between these metrics. In addition,

given the system dynamics of variable sensor data, channel

characteristics, and application context, the energy–
fidelity relationship changes at runtime, which requires

dynamic mode adaptations. In certain contexts, a partic-

ular sensor may provide essential data that must be timely

and of the highest quality, while other contexts may enable

that sensor to be turned off to save energy. Such top–down

contextual information can be combined with bottom–up

analysis in which a BSN node is empowered to determine

how important real-time data are to an application. Over-
all, the system must continuously balance fidelity require-

ments with resource efficiency.

To illustrate, consider on-node lossy compression of

inertial data collected on Parkinson’s disease patients with

the TEMPO BSN in human subjects study on the efficacy

of deep brain stimulation for tremor control [45], [46]. As

illustrated in Fig. 12, lower data rates result in higher

distortions, which correspond to lower energy con-

sumption (fewer bits to transmit) but lower data fidelity.

The figure also shows that the energy–fidelity relationship

is a function of the data. For example, scaling the Bstatio-

nary small tremor[ data rate to 1-b (from 12 b, normalized
per sample) equates to a 12� reduction in data rateVand a

substantial savings in BSN node energyVwith minimal

resultant mean squared error (MSE) distortion, but scaling

the Bstationary large tremor[ to 1 b would result in a much

larger distortion and perhaps an unacceptable loss of

application fidelity.

This observation points to the need for application- and

individual-specific profiling to effectively manage the
energy–fidelity tradeoff. Moreover, it is interesting to

note that Fig. 12 presents data collected from a single

patient over the course of a single clinical visit, which

elucidates the need for system adaptation based on dynamic

data. To illustrate further, Fig. 13 depicts a time-domain

distortion plot for fixed data compression, yielding a

compression ratio (CR) of approximately 18, for a 40-min

Fig. 12. Example rate distortion for compressed tremor data [50].

Fig. 13. Dynamic distortion of tremor data for a fixed CR [50].
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tremor data set. If an MSE � 100, for example, were
required for application fidelity to remain acceptable, then

any distortion below this level would be considered energy

inefficient (marked as the lower region in Fig. 13) because

data rate could be further reduced to meet the application

requirement; and data above this level would not have high

enough fidelity to meet the requirement (upper region).

Only by dynamically adjusting a data rate knob would the

node operate in an application-specific energy–fidelity
optimized range (middle region). Similarly, variable wire-

less channel quality can affect the energy cost of trans-

mission (due to retransmissions, stronger ECC, higher

transmission strengths, etc.) and contextual information

can affect the measure of fidelity (different information

may be of value for different locations, activities, incidents,

etc.), pointing to another need for dynamic adaptation.

Using the same 40-min tremor data set in Fig. 13 and
the BSN node energy model and distortion profiling tech-

niques presented in [47], the average MSE and energy per

bit were calculated for scenarios where the CR (Haar level

for this example) is statically fixed and where it is varied

dynamically based on real-time measures of variance,

which was shown to be a good proxy to determine the

instantaneous energy–fidelity relationship. Processing

overheads for performing Haar compression and variance
calculation using 128-sample windows are included in the

energy model, along with power management schemes

that put the processor to sleep when inactive. The static

setting is swept across all possible Haar levels, while dy-

namic management results in a single outcome for the given

data set and optimization objective. As shown in Fig. 14, the

dynamic compression scheme operates in a region that is

well under the Pareto-optimal curve of the static case.
New work can explore data-specific energy–fidelity

relationships provided by not only on-node processing

(which also includes classification, event detection, fea-

ture extraction, etc.), but also for sensing (i.e., what sen-

sors to have on when and at what sampling rate and
quantization bit depth) and coding (i.e., how to best code

for wireless transmission). Based on these relationships,

control schemes can be devised that dynamically manage

energy and fidelity based on real-time measures of sensed

data, channel quality, and context.

IV. OPEN RESEARCH CHALLENGES

The vision for BSNs presented above addresses many of the

CPS challenges relating to application demands, hardware

platforms, and wireless communications. We now briefly

present several overarching and open challenges for BSNs.

A. QoS and Fidelity
A formal methodology for the design and runtime

management of QoS requires identifying quantitative con-

tributing metrics and techniques for combining them to

form a single QoS assessment. Ultimately, the selection of

metrics and the weight they are given is application de-

pendent, but nearly all candidate BSN applications share

requirements for high application fidelity and long battery
life, and many call for high throughput and low latency.

In essence, a high QoS must be achieved under severe

resource constraints, complex environments, and varying

application semantics and context. While a layered approach

to QoS management is appropriate for more resource-heavy

systems, BSNs require an integrated, multiscale approach

capable of finding operating points across system levels to

maximize QoS metrics based on application-specific require-
ments and dynamic operating conditions. This is especially

important considering that each system level in a BSN

affects all of the other levels, making the level-independent

selection of QoS operating points suboptimal. QoS manage-

ment from a multiscale scale perspective must also be

explored by creating BSN system models that not only

leverage the optimizations that can be performed at

Fig. 14. Static versus dynamic Haar compression [50].
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individual system levels (node level and intra- and extra-BSN
networking), but also consider how such optimizations

affect the levels above and below it. It is also necessary to

validate and improve QoS optimization strategies by

experimenting on physical BSN systems in real application

settings to ensure realistic BSN system models.

High reliability and application fidelity are essential for

many BSN applicationsVespecially where Bmedical-

grade[ reliability is requiredVbut can be quite difficult
to achieve. One key challenge arises from the communica-

tion difficulties due to body motions, user mobility, co-

existence of many BSNs in the overall system, interference

from other wireless devices found in the environment, and

other dynamics caused by realistic environments with

obstacles and movement. It can also be expected that in-

dividual BSNs may become Bdetached[ from the infra-

structure system at times, so delay-tolerant networking
solutions may be required.

Another QoS challenge relates to the quantitative

evaluation of reliability and application fidelity. Current

level-specific mechanisms for these metrics include signal-

to-noise ratio (SNR), inverse bit error rate (1/BER), and

packet reception ratio (PRR). While these are useful mea-

sures for some aspects of QoS assessment, they do not

necessarily directly correlate with application fidelity be-
cause they are inherently application independent. For

example, an application focused on tremor assessment in

Parkinson’s disease patients is ultimately most interested

in the resulting rates of correct diagnoses, courses of

treatment, etc. Those are ultimately the kinds of quantita-

tive reliability and fidelity metrics that must be incorpo-

rated into QoS design and runtime management.

B. Robustness
Traditionally, the majority of sensor-based systems

have been closed systems. Creating robust systems in these

settings, while not easy, has been the subject of research

for many years. However, BSNs are not closed systems.

They move around in arbitrary environments and upload

various physiological data to doctors in real time. Current

software/hardware composition techniques, associated
analysis techniques, and tools need to be rethought and

developed to account for BSNs operating in open and he-

terogeneous environments. New unified communications

interfaces will be required to enable efficient information

exchange across diverse systems and nodes.

After initialization, BSNs have certain properties. For

example, the nodes of the BSN know their locations, have

synchronized clocks, know their neighbors or aggregator,
and have a coherent set of parameter settings such as

consistent sleep/wake-up schedules, appropriate power

levels for communication, and pair-wise security keys.

However, over time these coherent states can deteriorate.

The most common example of this deterioration problem

is clock drift, which causes nodes to have different enough

times to result in application failures. For robustness with

respect to time, clock synchronization must reoccur. Re-
running protocols to reestablish BSN properties is an im-

portant robustness issue. Robustness must also make use of

formal methods to develop reliable code, use in situ debug-

ging techniques, and provide online fault tolerance, in-

field maintenance, and general health monitoring services.

Problems are exacerbated due to the unattended operation

of the system, the need for a long lifetime, the openness of

the system, and the realities of the physical world.

C. Safety
The safety of sophisticated new healthcare systems that

include BSNs has not received the attention that devel-

oping novel functionality has. What is required is a sys-

tematic, multidisciplinary research program to tackle the

safety challenges raised by the increasing synergy of

healthcare and engineering. Of particular concern are the
many medical technologies that are built as stove piped

systems. Each addresses aspects of safety to some limited

extent, but there is no coordinating blueprint for ensuring

interoperable and safe operation of the resulting system of

systems. Further, a looming danger is the market pressure

that favors functionality over demonstrated quality as ex-

emplified by major commercial software applications that

ship with known defects.
In order to create and maintain safety in next-generation

medical environments we must have radically new solutions

that are aware of the complexities, intricacies and dynamics

of the physical world, as well as being aware of human

behaviors, disease information, and external knowledge such

as product safety studies. Explicit demonstration of safety on

an ongoing basis is also essential because of the dynamic

nature of engineered healthcare systems.

D. Security and Privacy
A fundamental problem that must be solved in BSNs is

dealing with security attacks [48]. Security attacks are

problematic for BSNs because of the minimal capacity

devices being used and the openness of the systems, in-

cluding the fact that most devices will communicate

wirelessly. The security problem is further exacerbated
because transient and permanent random failures are

commonplace and failures are vulnerabilities that can be

exploited by attackers. To meet realistic system require-

ments that derive from long lived and unattended

operation, BSNs must be able to continue to operate satis-

factorily in the presence of, and to recover effectively from

security attacks. Cryptographic keys must be distributed

securely. The system must also be able to adapt to new
attacks unanticipated when the system was first deployed.

It is an open question as to the type of hardware support

required and how the layers of software can deal with these

difficult problems.

BSNs provide many useful services for individuals, but

also create many opportunities to violate privacy. To solve

the privacy problem created by wireless BSNs, the privacy
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policies for a BSN must be specified. Once specified the
BSN system must enforce privacy. Consequently, the sys-

tem must be able to express users’ requests for data access

and the system’s policies such that the requests can be

evaluated against the policies in order to decide if they

should be granted or denied. One of the more difficult

privacy problems is that systems may interact with other

systems, each having their own privacy policies. Conse-

quently, inconsistencies may arise across systems. Online
consistency checking and notification and resolution

schemes are required. Since BSNs communicate wire-

lessly, privacy can be violated by eavesdropping. It has

been shown [49] that encryption alone is not sufficient to

ensure privacy due to eavesdropping. New cost-effective

techniques are needed.

V. SUMMARY

BSNs are important CPSs that promise to improve quality

of life through improved health, augmented sensing and

actuation for the disabled, independent living for the

elderly, and reduced healthcare costs. We described the
state of the art that has primarily investigated several key

applications and off-the-shelf hardware and communica-

tion quality. We also described a new BSN hardware plat-

form that integrates novel circuit designs and cutting-edge

technologies to reduce the cost of communication and

computation by several orders of magnitude. New cross-

layer solutions that incorporate the unique characteristics

of this platform at all layers of the BSN application stack
were presented. Such a design produces techniques to

adaptively balance changing top–down QoS demands and

bottom–up resource and energy availability. We also de-

scribed techniques to create bidirectional information flow

across multiple layers of the system from the hardware to

the application, allowing all layers to exploit both high-

level information about physical context (such as location

or physical activity) and low-level system information
(such as direct sensing of the wireless channel or physical

environment). The value of adaptive sensing, communi-

cation, and data fusion were also discussed. Finally, a

summary of overarching challenges was presented. h
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[6] N. Noury, T. Hervé, V. Rialle, G. Virone,
E. Mercier, G. Morey, A. Moro, and
T. Porcheron, BMonitoring behavior in
home using a smart fall sensor and position
sensors,[ in Proc. 1st Int. IEEE Eng. Med.
Biol. Soc. Special Topic Conf. Microtechnol.
Med. Biol., Lyon, France, Oct. 2000,
pp. 607–610.

[7] N. Noury, P. Barralon, G. Virone, P. Boissy,
M. Hamel, and P. Rumeau, BA smart sensor
based on rules and its evaluation in daily
routines,[ in Proc. 25th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc., Cancun, Mexico,
Sep. 2003, pp. 3286–3289.

[8] Q. Li, J. A. Stankovic, M. A. Hanson,
A. T. Barth, and J. Lach, BAccurate, fast
fall detection using gyroscopes and
accelerometer-derived posture information,[

in Proc. Int. Workshop Body Sensor Netw.,
2009, pp. 138–143.

[9] M. A. Hanson, H. C. Powell, Jr., A. T. Barth,
J. Lach, and M. Brandt-Pearce, BNeural
network gait classification for on-body inertial
sensors,[ in Proc. Int. Workshop Body Sensor
Netw., 2009, pp. 181–186.

[10] T. E. Lockhart, A. T. Barth, X. Zhang,
R. Songra, E. Abdel-Rahman, and J. Lach,
BPortable, non-invasive fall risk assessment
in end stage renal disease patients on
hemodialysis,[ Wireless Health, pp. 84–93,
2010.

[11] T. Schlebusch, L. Rothlingshofer, S. Kim,
M. Kony, and S. Leonhardt, BOn the road to a
textile integrated bioimpedance early warning
system for lung edema,[ in Proc. Int. Conf.
Body Sensor Netw., 2010, pp. 302–307.

[12] K. S.-H. Ong, Y. Siew-Peng, and L. Keck-Voon,
BImplementation of fast fourier transform
on body sensor networks,[ in Proc. Int. Conf.
Body Sensor Netw., 2010, pp. 197–202.

[13] E. Mitchell, S. Coyle, N. E. O’Connor,
D. Diamond, and T. Ward, BBreathing
feedback system with wearable textile
sensors,[ in Proc. Int. Conf. Body Sensor
Netw., 2010, pp. 56–61.

[14] E. Farella, A. Pieracci, L. Benini, and
A. Acquaviva, BA wireless body area sensor
network for posture detection,[ in Proc.
11th IEEE Symp. Comput. Commun.,
Sep. 2006, pp. 454–459.

[15] A. Chhikara, A. H. McGregor, L. Hadjilucas,
F. Bello, and A. S. Rice, BQuantitative
assessment of the motion of the lumbar
spine and pelvis with wearable inertial
sensors,[ in Proc. Int. Conf. Body Sensor
Netw., 2010, pp. 9–15.

[16] K.-I. Wong, BRapid prototyping of
a low-power, wireless, reflectance
photoplethysmography system,[ in
Proc. Int. Conf. Body Sensor Netw., 2010,
pp. 47–51.

[17] M. Kony, W. Walter, T. Schlebusch, and
S. Leonhardt, BAn RFID communication
system for medical applications,[ in
Proc. Int. Conf. Body Sensor Netw., 2010,
pp. 71–75.

[18] J. Penders, V. Pop, L. Caballero,
J. van de Molengraft, R. van Schaijk,
R. Vullers, and C. Van Hoof, BPower
optimization in body sensor networks
the case of an autonomous wireless EMG
sensor powered by PV-cells,[ in Proc. Int.
Conf. IEEE Eng. Med. Biol. Soc., 2010,
pp. 2017–2020.

[19] G. Chen, H. Ghaed, R. Haque, M. Wieckowski,
Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok,
K. Wise, D. Blaauw, and D. Sylvester,
BA 1 cubic millimeter energy-autonomous
wireless intraocular pressure monitor,[ in
Proc. Int. Solid-State Circuits Conf., 2011,
pp. 310–311.

[20] Y. Liao, H. Yao, B. Parviz, and B. Otis,
B3�W wirelessly powered CMOS glucose
sensor for an active contact lens,[ in Proc. Int.
Solid State Circuits Conf., 2011, pp. 38–39.

[21] J. Yoo, L. Yan, S. Lee, Y. Kim, and H.-J. Yoo,
BA 5.2 mW self-configured wearable body
sensor network controller and a 12 uW
wirelessly powered sensor for a continuous
health monitoring system,[ IEEE J. Solid-State
Circuits, vol. 45, no. 1, pp. 178–188, Jan. 2010.

[22] L. Yan, J. Yoo, B. Kim, and H.-J. Yoo,
BA 0.5-uVrms 12-uW wirelessly powered
patch-type healthcare sensor for wearable
body sensor network,[ IEEE J. Solid-State
Circuits, vol. 45, no. 11, pp. 2356–2365,
Nov. 2010.

[23] M. Seok, S. Hanson, Y.-S. Lin, Z. Foo, D. Kim,
Y. Lee, N. Liu, D. Sylvester, and D. Blaauw,
BThe phoenix processor: A 30 pW platform
for sensor applications,[ in Proc. Symp. Very
Large Scale Integr. (VLSI) Circuits, 2008,
pp. 188–189.

[24] X. Zou, X. Xu, L. Yao, and Y. Lian, BA 1-V
450-nW fully integrated programmable
biomedical sensor interface chip,[ IEEE
J. Solid-State Circuits, vol. 44, no. 4,
pp. 1067–1077, Apr. 2009.

[25] S. Jocke, J. Bolus, S. N. Wooters, A. D. Jurik,
A. C. Weaver, T. N. Blalock, and
B. H. Calhoun, BA 2.6-�W sub-threshold
mixed-signal ECG SoC,[ in Proc. Symp. Very
Large Scale Integr. (VLSI) Circuits, 2009,
pp. 60–61.

Calhoun et al.: Body Sensor Networks: A Holistic Approach From Silicon to Users

104 Proceedings of the IEEE | Vol. 100, No. 1, January 2012



[26] N. Verma, A. Shoeb, J. Bohorquez,
J. Dawson, J. Guttag, and A. Chandrakasan,
BA micro-power EEG acquisition SoC with
integrated feature extraction processor for
a chronic seizure detection system,[ IEEE
J. Solid-State Circuits, vol. 45, no. 4,
pp. 804–816, Apr. 2010.

[27] N. M. Pletcher, S. Gambini, and J. Rabaey,
BA 52 �W wake-up receiver with
�72 dBm sensitivity using an uncertain-IF
architecture,[ IEEE J. Solid-State Circuits,
vol. 44, no. 1, pp. 269–280, Jan. 2009.

[28] W. W. Si, D. Weber, S. Abdollahi-Alibeik,
M. Lee, R. Chang, H. Dogan, H. Gan,
Y. Rajavi, S. Luschas, S. Ozgur, P. Husted, and
M. Zargari, BA single-chip CMOS bluetooth
v2.1 radio SoC,[ IEEE J. Solid-State
Circuits, vol. 43, no. 12, pp. 2896–2904,
Dec. 2008.

[29] J. R. Fernandes and D. D. Wentzloff,
BRecent advances in IR-UWB transceivers:
An overview,[ in Proc. IEEE Int. Symp. Circuits
Syst., Jun. 2010, pp. 3284–3287.

[30] H. Zhang, V. Prabhu, V. George, M. Wan,
M. Benes, A. Abnous, and J. M. Rabaey,
BA 1-V heterogeneous reconfigurable
DSP IC for wireless baseband digital
signal processing,[ IEEE J. Solid-State
Circuits, vol. 35, no. 11, pp. 1697–1704,
Nov. 2000.

[31] A. Wang, B. H. Calhoun, and
A. Chandrakasan, Sub-Threshold
Design for Ultra-Low-Power Systems.
New York: Springer-Verlag, 2006.

[32] B. H. Calhoun and A. Chandrakasan,
BA 256 kb sub-threshold SRAM in
65 nm CMOS,[ in Proc. IEEE Int.
Solid-State Circuits Conf., 2006,
pp. 628–629.

[33] B. H. Calhoun and A. Chandrakasan,
BUltra-Dynamic Voltage Scaling (UDVS)
using sub-threshold operation and local
voltage dithering,[ IEEE J. Solid-State
Circuits, vol. 41, no. 1, pp. 238–245,
Jan. 2006.

[34] A. P. Chandrakasan, F. S. Lee,
D. D. Wentzloff, V. Sze, B. P. Ginsburg,
P. P. Mercier, D. C. Daly, and R. Blazquez,
BLow-power impulse UWB architectures
and circuits,[ Proc. IEEE, vol. 97, no. 2,
pp. 332–352, Feb. 2009.

[35] J. K. Brown and D. D. Wentzloff,
BA 1900 MHz-band GSM-based
clock-harvesting receiver with �87 dBm
sensitivity,[ in Proc. IEEE Radio Freq. Integr.
Circuits Symp., Jun. 2011, DOI: 10.1109/RFIC.
2011.5940630.

[36] K. Whitehouse, C. Sharp, E. Brewer, and
D. Culler, BHood: A neighborhood abstraction
for sensor networks,[ in Proc. Int. Conf. Mobile
Syst. Appl. Services, 2004, DOI: 10.1145/
990064.990079.

[37] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp,
S. Kim, J. Jeong, J. Hui, P. Dutta, and
D. Culler, BMarionette: Using RPC for
interactive development and debugging
of wireless embedded networks,[ in Proc.
Int. Conf. Inf. Process. Sensor Netw., 2006,
pp. 416–423.

[38] T. Hnat, T. Sookoor, P. Hooimeijer,
W. Weimer, and K. Whitehouse, BMacroLab:
A vector-based macroprogramming
framework for cyber-physical systems,[ in
Proc. Conf. Embedded Netw. Sensor Syst.,
pp. 225–238, 2008.

[39] K. Whitehouse, J. Liu, and F. Zhao, BSemantic
streams: A framework for composable
inference over sensor data,[ in Proc.
Eur. Workshop Wireless Sensor Netw., 2006,
pp. 5–20.

[40] M. M. Khan, A. Alomainy, and Y. Hao,
BOff-body radio channel characterisation
using ultra wideband wireless tags,[ in Proc.
Int. Conf. Body Sensor Netw., Jun. 7–9, 2010,
pp. 80–83.

[41] V. G. Chaganti, D. B. Smith, and
L. W. Hanlen, BSecond-order statistics
for many-link body area networks,[ IEEE
Antennas Wireless Propag. Lett., vol. 9,
pp. 322–325, 2010.

[42] K. S. Prabh and J.-H. Hauer, BOpportunistic
packet scheduling in body area networks,[ in
Proc. Eur. Conf. Wireless Sensor Netw., 2011,
pp. 114–129.

[43] D. Smith, L. Hanlen, J. Zhang, D. Miniutti,
D. Rodda, and B. Gilbert, BCharacterization of
the dynamic narrowband on-body to off-body
area channel,[ in Proc. IEEE Int. Conf.
Commun., Jun. 14–18, 2009, DOI: 10.1109/
ICC.2009.5198824.

[44] K. Lorincz, B. Chen, J. Waterman,
G. Werner-Allen, and M. Welsh, BResource
aware programming in the pixie OS,[ in Proc.
Conf. Embedded Netw. Sensor Syst., 2008,
pp. 211–224.

[45] M. A. Hanson, H. C. Powell, Jr.,
R. C. Frysinger, D. S. Huss, W. J. Elias, and
J. Lach, BTeager energy assessment of
tremor severity in clinical application of
wearable inertial sensors,[ in Proc. IEEE-NIH
Life Sci. Syst. Appl. Workshop, 2007,
pp. 191–194.

[46] H. C. Powell, Jr., M. A. Hanson, and
J. Lach, BOn-body inertial sensing and
signal processing for clinical assessment of
tremor,[ IEEE Trans. Biomed. Circuits Syst.,
vol. 3, no. 2, pp. 108–116, Apr. 2009.

[47] M. A. Hanson, H. C. Powell, Jr., A. T. Barth,
and J. Lach, BEnabling data-centric
energy-fidelity scalability in wireless body
area sensor networks,[ in Proc. Int. Conf.
Body Area Netw., 2009, DOI: 10.4108/ICST.
BODYNETS2009.6109.

[48] C. C. Y. Poon, Y. Zhang, and S. Bao,
BA novel biometrics method to secure
wireless body area networks for telemedicine
and m-health,[ IEEE Commun. Mag., vol. 44,
no. 4, pp. 73–81, Apr. 2006.

[49] V. Srinivasan, J. A. Stankovic, and
K. Whitehouse, BProtecting your daily
in-home activity information from a wireless
snooping attack,[ in Proc. Int. Conf. Ubiquitous
Comput., 2008, DOI: 10.1145/1409635.
1409663.

[50] A. T. Barth, M. A. Hanson, H. C. Powell, Jr.,
and J. Lach, BOnline data and execution
profiling for dynamic energy-fidelity
optimization in body sensor networks,[ in
Proc. Int. Conf. Body Sensor Netw., 2010,
pp. 213–238.

[51] L. Brooks and H. S. Lee, BA
zero-crossing-based 8 b 200 MS/s pipelined
ADC,[ in Proc. IEEE Int. Solid-State Circuits
Conf., Feb. 2007, pp. 460–461.

[52] A. Wang and A. Chandrakasan, BA 180 mV
FFT processor using subthreshold circuit
techniques,[ in Proc. IEEE Int. Solid-State
Circuits Conf., Feb. 2005, pp. 292–293.

ABOUT T HE AUTHO RS

Benton H. Calhoun received the B.S. degree in

electrical engineering from the University of

Virginia, Charlottesville, in 2000 and the M.S.

and Ph.D. degrees in electrical engineering from

the Massachusetts Institute of Technology,

Cambridge, in 2002 and 2006, respectively.

In January 2006, he joined the faculty at the

University of Virginia as an Assistant Professor in

the Electrical and Computer Engineering Depart-

ment. His research interests include low-power

digital circuit design, subthreshold digital circuits, SRAM design for end-

of-the-roadmap silicon, low-voltage field-programmable gate arrays

(FPGAs), variation-tolerant circuit design methodologies, body sensor

networks (BSNs), and low energy electronics for wireless health. He is a

coauthor of Sub-Threshold Design for Ultra Low-Power Systems (New

York: Springer-Verlag, 2006).

John Lach (Senior Member, IEEE) received the B.S.

degree in science, technology, and society from

Stanford University, Stanford, CA, in 1996 and the

M.S. and Ph.D. degrees in electrical engineering

from the University of California Los Angeles,

Los Angeles, in 1998 and 2000, respectively.

Since 2000, he has been a faculty member in

the Electrical and Computer Engineering Depart-

ment, University of Virginia, Charlottesville. His

primary research interests include wireless health,

body sensor networks (BSNs), and digital system design methodologies.

Dr. Lach is a former Associate Editor for the IEEE TRANSACTIONS ON

COMPUTERS and the IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS. He is a Co-Founder and Steering

Committee member for the Wireless Health conference series and is a

Co-Founder and Co-Director of the UVA Center for Wireless Health.

Calhoun et al.: Body Sensor Networks: A Holistic Approach From Silicon to Users

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 105



John Stankovic (Fellow, IEEE) received the Ph.D.

degree in computer science from Brown Univer-

sity, Providence, RI, in 1979.

He is the BP America Professor in the Computer

Science Department, University of Virginia,

Charlottesville. He served as Chair of the Depart-

ment for eight years. His research interests are in

real-time systems, distributed computing, wire-

less sensor networks, and cyber–physical systems.

Prof. Stankovic is a Fellow of the ACM. He won

the IEEE Real-Time Systems Technical Committee’s Award for Outstand-

ing Technical Contributions and Leadership. He also won the IEEE

Technical Committee on Distributed Processing’s Distinguished Achieve-

ment Award (inaugural winner). He was the Editor-in-Chief for the IEEE

TRANSACTIONS ON DISTRIBUTED AND PARALLEL SYSTEMS and was founder and

Co-Editor-in-Chief for the Real-Time Systems Journal.

David D. Wentzloff received the B.S.E. degree in

electrical engineering from the University of

Michigan, Ann Arbor, in 1999 and the S.M. and

Ph.D. degrees in electrical engineering from the

Massachusetts Institute of Technology (MIT),

Cambridge, in 2002 and 2007, respectively.

Since August 2007, he has been with the

University of Michigan, where he is currently an

Assistant Professor of Electrical Engineering and

Computer Science.

Dr. Wentzloff has served on the technical program committee for the

2008–2010 IEEE International Conference on Ultra-Wideband (ICUWB)

and the 2011 International Symposium on Low Power Electronics and

Design (ISLPED), and as a Guest Editor for the IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES, the IEEE COMMUNICATIONS MAGAZINE,

and the Elsevier Journal of Signal Processing: Image Communication.

Kamin Whitehouse received the B.S. degree in

electrical engineering and the B.A. degree in

cognitive science and philosophy from Rutgers

University, New Brunswick, in 1999 and the M.S.

and Ph.D. degrees in computer science from the

University of California Berkeley, Berkeley, in

2003 and 2006, respectively

He has been on the faculty of the Computer

Science Department, University of Virginia,

Charlottesville, since 2006. His research focuses

on wireless embedded systems and has been recognized through the

National Science Foundation (NSF) CAREER award and NSF, NDSEG, GOF,

Diversity, and Siebel fellowships.

Adam T. Barth (Student Member, IEEE) received

the B.E. degree in electrical engineering from

Vanderbilt University, Nashville, TN, in 2006 and

the M.S. and Ph.D. degrees from the University

of Virginia, Charlottesville, in 2009 and 2011,

respectively.

His current research interests include research

and design of embedded systems for use in the

wireless health and body sensor network (BSN)

fields, and low-power electronic design for wear-

able, implantable, or unobtrusive assessment and treatment of medical

disorders.

Jonathan K. Brown received the B.S.E. and M.S.E.

degrees from the University of Michigan, Ann

Arbor, in 2007 and 2008, respectively, where he is

currently working towards the Ph.D. degree in

electrical engineering.

His research interests include the design of

low-power wireless integrated circuits and

systems.

Mr. Brown is a recipient of the 2011 DAC/ISSCC

Student Design Contest Award.

Qiang Li received the B.S. and M.S. degrees in

computer science from Tsinghua University,

Beijing, China. He is currently working towards

the Ph.D. degree in computer science at the

University of Virginia, Charlottesville, under the

guidance of Prof. J. Stankovic.

While at Tsinghua University, he worked on

multimedia processing and embedded systems.

His research is mainly on developing reliable and

scalable solutions for body sensor networks

(BSNs).

Seunghyun Oh received the B.S. degree in

electrical engineering from Seoul National Uni-

versity, Seoul, Korea, in 2007 and the M.S. degree

in electrical engineering from the University of

Michigan, Ann Arbor, in 2009.

His research interests include radio-frequency

(RF) integrated circuits and communication in

body area networks.

Mr. Oh is the recipient of the Korea Foundation

for Advanced Studies Fellowship.

Nathan E. Roberts received the B.S. degree in

electrical engineering from the University of

San Diego, San Diego, CA, in 2006 and the M.S.

degree in electrical engineering from the Univer-

sity of Michigan, Ann Arbor, in 2011, where he is

currently working towards the Ph.D. degree in

electrical engineering.

From 2006 to 2009, he held a position with the

Product Development Division, Lattice Semicon-

ductor, Hillsboro, OR. His research interests in-

clude the design of low-power wireless integrated circuits.

Yanqing Zhang received the B.S. degree in

microelectronics from Fudan University, Shanghai,

China, in 2009. He is currently working towards

the Ph.D. degree in electrical engineering at the

University of Virginia, Charlottesville.

His research interests include low-power

systems-on-chip (SoCs), SoC architecture optimi-

zation, subthreshold clock tree synthesis and

timing closure, subthreshold synthesis design

flow optimization, and low-power, robust block

level design methods.

Calhoun et al.: Body Sensor Networks: A Holistic Approach From Silicon to Users

106 Proceedings of the IEEE | Vol. 100, No. 1, January 2012


