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This paper presents an adaptive, closed loop memol
system that leverages combinations of {iasedperipheral
assists (CPA) for both read and write to expand the operatir _
range of a 256kb 6T SRAM by over 67% to cover from 1.2V
down to 0.38V. Assists are used in reverse to tune cana
bitcells that allowa closed loop control athe Vpp to track the =

minimum operdhg voltage (Mun) at a desired operating % Extended range

frequency. The design uses CPA together with canary bas: Tt

Vun tracking to maximizethe operating range that is =

compatible withthe subthreshold logic (6TSRAM usually has SN0 RS e e P e S P
higher Myn than logic circuits across pocess, voltage, and SRAM max operating frequency(MHz)
temperature (PVT) variations [1][2][]) and to minimize (b)

guardbanding. The design is thereby optimized for meeting _ _
the low power, and Varying frequency needs of h|gh|y Variab|§lg. 1. a) Measured CDF of 256kb SRAM W showing 90th percentile

; e ; g vin improvement of 240mV using combined assistgp[¥oosting (VDDB),
:jnéﬁrs?tf/to?g'llg\éeezﬁhmg (IoE) applications while retagithe WL boosting (WLB), negative bitline (NBL)andb) measured ¥, Shmoo.

Since battery powered or energy haredsibE devices T0 maximize the benefits of CPAuntime SRAM (i
mostly operate at lower frequencies (~10 kHz to 10 MHzfetermination7] reducesthe guarebanding of SRAM Yy at
[5][6], there is a need to expand the 6T SRAM operating range givenfrequency However this technique h@a huge penalty
to lower voltages to achieve low power operatiBiasbased N the number of cycles for writing and reading the whole
assist techniques can lower SRANLV[11[2][4], butselecting SRAM andin total energyfor using a buikin-selftest (BIST)
the best CPA depends on thgpvand can affect the power / On the other hand, smaller sized anarySRAM based Y
performance tradeoff. Fig (&) shows the measured cumulative tracking[8] enableseach chip to function at or near its\N for
distribution functions for the SRAM with three peripheral Much lesser clock cycles and energy
asssts: (1) Wbp boosting (VDDB) for lowvoltage readability ;
and halfselect [1J4] readstabilty: (2) wordine (WL) = Clock Diagramofthe System B
boosting (WLB); and (3) negative bitline (NBL) for write Fig 2 (b) shows our full SRAM system comprising a 256kb
ability. Using all the three assists achieves 240mV ofy\/ S.RAM in 4 subarrays (mats) each Wlth 4 banks of 128x128 6T
improvement (at 90th peentile) and beats using other single Pitcells and 1 row of 128 canary bitcefisr bank (2kb canary
or combinations (Fig 1a)), but using fewer assists can savePitcells total), an assist controller (ASC), a frequetwedigital

ower overhead when the target.Vis hiaher for a qiven converter (FDC), ad a builtin selftest (BIST) block for the
Requency 9ebo g g core SRAM and the canary bitcells (CBIST). The canary cells

share the peripheral circuitsuch as write driver sense
Fig 1 (b) shows the measured Shmoo plot with the €PA amplifiers, precharge circustetc. with the SRAM array but
extended range highlighted for tAB6kb SRAM. Using assists have dedicated reverse assish(Rontrols B] that tune write
alone requires guatdanding to ensure that all chips function ability and readability of the canaries by degrading the canary
across PVT, reducing thmtentialpower savings. WL signal using eight programmalsettings.
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Fig. 2. a) Annotated micrograph of the SRAM chip) system level bdck diagram for the 256kb 6T seifning SRAM subsystem showing subcomponecits
flowchart for canary M tracking, and d) system waveforms sy selftuning strategy.

The CBIST tests the canary to provide the numbdaitires  re-run when the frequencyhanges or t@eriodically adjust for
to the ASC. temperature changes.

B. Selftuning Strategy of the S¢m

Fig 2 (c) and (dpresent the seluning strategy for canary
based SRAM V\;n tracking and dynamic control over assists

and \pp selection. When tuning is enabled (TRACK=1), the Digital Pattern
FDC converts the inputlock (CLK_IN) frequency to a 1Bit BsiningeSoures ESAR R Rek L el
digitized output (FDCOUT) and initializes an (affiip) Low

Dropout (LDO) regulator to an initial 35 for the given N _f
frequency. Then, the ASC chooses an assist configuration fot SRR L

the current ¥p from a lookup table (LUT for flexibly
optimizing assist selection based on measured characterizatio
across Vp. The ASC then iterates to find the targgjwfor

the given frequency based on the canary outputs. The CBIST [
executes canary write and read operations across altycana = 5 ’ TR Ly
addresses, calculates the number of canary failuggstien ' .
compares Fwith a canary failure threshold valuejFto ‘- e, : ;
generate a pass/fail signal (SPF). If the CBIST passes, the AS( ' ; o
reduces ¥p by changing a +it signal (LDOCTRL) v ‘ B sumper settings (Sl
controlling the of-chip LDO. The ASC repeats this process | : " : L
until the CBIST fails, then it raisespy to the last operational ! ) -

Vpp, Which completes the closdabp tracking for \jn. The Temperature Ghamber SRAM;Systom FCB
SRAM retains its data through this process, and tuning can by 3. Experimental setup fahechip measuremest
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Fig. 4. Measured canary w\ tracking across clock frequencies [1 or 10, 50, 100, and 150] MHz and tempes®ir€ b) 85C, andc) -20C, showing Win
tuning rangeandd) the distribution of overall M reduction using assist and tracking.

= 2
II. CANARY FEEDBACK MECHANISM % === EE Ry
While the assists expand the operating range, the canay i BN N I O N I
feedback is critical to ensure thapy/scaling stops before the = i 337X ]
core SRAM fails. The RA{] forces failures in canary bits = . yuuux i i ML O'GEXAAA
ahead of the core bits at eight programmable reverse ass® reduction § P S Nvaw rodUCtO Lsifg
settings (RAS). Since the canaries are core SRAM cells it 1o, shaip | " combined assists |
RAS applied, their failure distribution is a shifted version of the & 0.38Y, '/bf&%“ 2 redvetion ‘-&—No assist r
. . 12.6pW Y BT A (Vi tracking) ~>-VDDB + WLB + NBLA|
core cells that tracks with frequency and tempera®jteThis 2 102 C . . . -
allows us to setdrbased on CBIST results from a few diesto % ™ SRAM maximum opE:roating frequenC;D(MHz) 10
calibratethe canary failures relative to the core SRAM cells, @)
thusall thechipsare abldo track their \{. = 10° ‘ . .
m
Ill. EXPERIMENTAL SETUP E*DZ’ e e e
Fig 3 shows the experimental setup for the measurement 5D =D & b pe
data. A DC voltage source supplies power to the SRAM PCE 2 1o'F _?.‘?:[?__-7_-_ e AL a
The digial pattern generator (PGLA) generatesvaveform 5 s AR o
that controls the SRAM chip. An external clock source drive: é’ 10°} a8 a 2700
the PGLA to generate clock signal to the PCB and the chip. § e -|>§;g
Overall, the PGLA is controlled by a laptop computer for—‘m';).3 0a  o0s o8  or o8 oo ; T 12

waveform generation and datallection. Supply voltage (V)
(b)

IV. MEASUREMENT AND RESULTS

Fig 4 (a), (b), and (c) showhe measured tunable range for Fig. 5. a) Measured active power reduction of SRAM and BIST with
canaries a’nd ,the SRAM ¥ across temperature and combir_1ed peripheral _assists andy tracking, ad b) measured leakage
frequency. Fig 4 (d) shows the distribution othe Vy reduction from Vo scaling.
reduction using CPA and M tracking across 30 dieShe
ASC sets the fFand uses@alLUT to select the RAS and sense
amplifier delay based on the currenpywhich allows the user o mponents without BISTs in this desigine combined assist

to tradeoff guareband margin with power savingkig 4 (a),  gyerhead in the SRAM is less than 2.88ig 5 (a) shows the

(b), and (c) shovsettied Wy values based on settings that o\ver savings from thcombined approaghvhich extends the

aggressively redudhemargin to maximizéhe power savings, - operating range down to 0.38&hdgivesa 12.4X lower(Fig 5

but the flexible system allows including an arbitrary margin. (b)) leakage power (9.5pWi/bit) than at 1.2V. If canary tracking
CPA and canary basedy) tracking work together to Were not available, process vari:_ition would rgqui.sg §taling _

allow each chip seffuning to its Vi for a given frequency, to stop at 0.47V to ensure all chips work (achieves 337X active

including expanded operating range and power savings for logower reduction using CPA for SRAM and BIST), bugV

Vpp I0E applications. Fig 2 (a) shows an annotatecphiso tracking allows an extra 4.3X power reduction by removing the

of the SRAM chip. The area overheads are 0.77% for the
canary bits in each SRAM bank and 1.8% for the system



@ (b)

Fig. 6. Simulation results ofanary tuning ah) 45nm andd) 32nm technologwt TT_27C corneshowing that canary based systeg\tan be tunedbovethe
SRAM Vui.

TABLE 1. POWERBREAKUP FOR THESRAM AND BIST. V. CONCLUSIONS
Supply (V) | SRAM and BIST | SRAM BIST Power This chip extendshe 6T SRAM operating range by over
Power Power 67% (from 1.2\V0.71V=0.49V to 1.2W0.38V=0.82V, in sub

threshold)using three combinertad/writeassists andanary
based Y tracking. The SRAMselftunes tothe Vyy across
0.47 54.3uwW 49.7uwW 4.6uW process and temperature for a target frequency. This adaptive
solution enables a range of IoE applications and achieves up to

1.2 18.3mW 14.4mwW 3.9mwW

. 12.6pW 11.4pW 1.2uwW . . .
0.38 ou H " 1444X active power reductio@ur canary based tracking
technique iscalable to 45nm and 32nm technologies.
guardband for those chips that can function at lowgp Yup ACKNOWLEDGMENT

to 1444X active power savingBig 5 (a)). Table lincludesthe
power breakup of the SRAM and BIST in the chip. It showaQA
that these techniques reduce the SRAM power from 14.4m

to 11.4uW (1263X power reduction). Table Il compares thi
work to recentwide voltagerange SRAMs for low power
applicationsFig 6 (a) and (b) show that the canary basgg V
tracking is scalable t45nm a_nd 32nntechnologies for a wide REFERENCES
range ofvoltages and frequenes
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