

A 256kb 6T Self-Tuning SRAM with Extended 0.38V-1.2V **Operating Range using Multiple Read/Write Assists** and V_{MIN} Tracking Canary Sensors

*Arijit Banerjee, *Ningxi Liu, *Harsh N. Patel, *Benton H. Calhoun *Electrical and Computer Engineering University of Virginia, Charlottesville

ROBUST LOW POWER VLSI

1819

** John Poulton, **C. Thomas Gray ** Nvidia, Durham, North Carolina

Motivation

IoE market rapidly growing

IoE= Internet of Everything

ROBUST LOW POWER VLSI

2

Motivation

IoE market rapidly growing

 Battery recharge and replacement problems

IoE= Internet of Everything

ROBUST LOW POWER VLSI

Motivation

IoE market rapidly growing

 Battery recharge and replacement problems

Soln: ULP wide-range DVS

IoE= Internet of Everything, ULP= Ultra-low Power, DVS=Dynamic Voltage Scaling

Bottleneck in ULP wide-V_{DD} Range

 V_{MIN} guard-banding in 6Ts

Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
- SRAM V_{MIN} DVS bottleneck

Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
- SRAM V_{MIN} DVS bottleneck
- Dual rail SRAMs SoC level tradeoffs

Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
- SRAM V_{MIN} DVS bottleneck
- Dual rail SRAMs SoC level tradeoffs
- Different solutions across applications

SRAM Solutions for ULP Applications

ROBUST LOW POWER VLSI

Scope of 6T SRAM Improvements

 Peripheral assist for V_{MIN} improvement

[Source: A. Banerjee. et al. ISQED 2014]

10

Scope of 6T SRAM Improvements

Tracking V_{MIN} could Peripheral assist for save energy **V_{MIN}** improvement 1.0000 42.2% 30.7% V_{MIN} 0.8000 write 36% 51.5% Lower V_{MIN} guard-band 0.6000 at Normalized SRAM cycle 0.4000 0.2000 ener 0.0000 \cong TT \boxtimes SS \blacksquare SF \equiv FS \otimes FF 28nm TT 80C at V_{MIN} (without assist)

[Source: A. Banerjee. et al. ISQED 2014]

Scope of 6T SRAM Improvements

- Peripheral assist for V_{MIN} improvement
- Lower V_{MIN} guard-band
- Proposed Solution
 - Combined assist¹ and Canary based V_{MIN} tracking² reducing guardbanding

[Source: A. Banerjee. et al. ISQED 2014]

[¹E. Karl et al., 2012; ²A. Banerjee et al. 2015]

. -

Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion

Canary SRAM Sensors

[Source: http://animalphotos.info/a/topics/animals/birds/canaries/]

Canary SRAM a sensor or detector

Canary SRAM Sensors

[Source: http://animalphotos.info/a/topics/animals/birds/canaries/]

- Canary SRAM a sensor or detector
- Fails earlier than the population of SRAM bits

Canary SRAM Sensors

[Source: http://animalphotos.info/a/topics/animals/birds/canaries/]

- Canary SRAM a sensor or detector
- Fails earlier than the population of SRAM bits
- Prior work was in SRAM DRV* tracking¹

¹ [J. Wang, and B. H. Calhoun, CICC, 2007], *DRV=Data retention voltage; ROBUST LOW POWER VLSI

Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion

Peripheral Assists and Reverse Assist

- What is a peripheral assist (PA) in SRAM context?
 - An auxiliary circuit that improve read/write-ability

Peripheral Assists and Reverse Assist

- What is a peripheral assist (PA) in SRAM context?
 - An auxiliary circuit that improve read/write-ability
- What is reverse assist?
 - An auxiliary circuit that degrades read/write-ability
 - SRAM bitcell + Reverse Assist =

ROBUST LOW POWER VLSI

Example: SRAM write V_{MIN} Distribution with Reverse Assist Settings (RAS)

Input and Output Design Metrics

Input Metrics							
	Ν	Number of SRAM bits on					
		a chip					
Ŋ	SRAM	Core SRAM target yield					
С		Number of canary SRAM					
		bits					
	F _{th}	Canary failure threshold					
		condition					
V _{RA}	(RAS ¹)	Canary BL type reverse					
		assist voltage					
Output Metrics							
	P _{fc}	Canary SRAM chip					
		failure probability					

[Source: A. Banerjee. et al. ISQED 2014]

¹RAS=Reverse assist settings; F_{th} = Failure threshold condition

ROBUST LOW POWER VLSI

Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion

256kb Self-tuning SRAM Architecture

ROBUST LOW POWER VLSI

NIVERSITY

23

V_{MIN} Self-tuning Operation

Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion

Experiments and Results

SRAM + PAs = Max 240mV V_{MIN} improvements

Does not eliminate V_{MIN} guard-bands

PA=Peripheral assists

ROBUST LOW POWER VLSI

UNIVERSITY VIRGINIA

V_{MIN} Lowering using Combined Read/Write Assists

Experiments and Results

- SRAM + PAs + Canaries = Arbitrary guardband lowering can save 1444X active power
- SRAM + PAs + Canaries = 12.4X leakage savings

PA=Peripheral assists

ROBUST LOW POWER VLSI

Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking

Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking

Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking

ROBUST LOW POWER VLSI

UNIVERSITY VIRGINIA

Leakage Power Reduction using Combined Assist and Canary Tracking

Canary V_{MIN} Tracking @ 130nm Bulk

33

Canary V_{MIN} Tracking @ 130nm Bulk

34

Canary V_{MIN} Tracking @ 130nm Bulk

Scalability of Canary Tracking @ 32nm FDSOI

30

Overhead

- Canary area overhead only 0.77% (array)
- Combined assist area overhead 2.8% in SRAM
- Total system components without BISTs 1.8%
- Onetime canary tuning (matching the worst case SRAM bitcell) overhead
- Running ~ 90/282 cycles/V_{DD} granularity per frequency/temp change for full 512b/2kb canaries

Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion

Comparison

		VLSI' 15	This work	ISSCC'15	VLSI'14	ISSCC'12
Memory Features	Technology	14nm	130nm	28nm	180nm	22nm
	Cell type	8T	6Т	6Т	8Т	6Т
	Capacity	288kb	256kb	256kb	16KB	576KB
DVS/VMIN Features	DVS range	1-0.3V (700mV)	1.2-0.38V (850mV)	0.9-0.58V (320mV)	1.8-0.6V (1200mV)	1-0.625V (375mV)
	V _{MIN} Tracking	Ν	Y	N	Ν	Ν
	V _{MIN}	0.3V	0.38V	0.58V	0.6V	0.7V
Supply / Power	Sub-VT Operation	Ν	Y	N	Ν	Ν
	Max power Reduction	-	1444X	-	16.4X	-

Conclusion

- A wide DVS range (1.2V-0.38V) with lower SRAM V_{MIN} (0.38V) achieved using multiple assists (write/read) across supplies
- Canary sensors track SRAM V_{MIN} for margin guard-band minimization
- Demonstrated a reliable and an adaptive SRAM system selecting optimal V_{DD} and assist techniques for ULP IoE enablement

Acknowledgements

- Advisor: Professor Ben Calhoun
- UVa Colleagues: Harsh Patel, Ningxi Liu, Farah Yahya, Divya A. K., Kevin Leach, Dilip Vasudevan, Terry Tigner
- Nvidia Colleagues: Tom Gray and John Poulton
- These projects was supported in part by NVIDIA through the DARPA PERFECT program

Thank You

42