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Capacitor Multi-Output Power Management System with Multi-
Rail Energy Sharing, All-Rail Cold Startup, and Adaptive
Conversion Control for mm-scale Distributed Systems
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.~ Advancements in power and size reduction for integrated circuits (IC) enable integration
< of self-powered systems into mm-scale fiber strand [1]. Moving towards intricate fiber
§networks where multiple subsystems interact within textiles, energy harvesting and
< power management units (EHPMU) require full autonomy, ultra-low quiescent power,
 high efficiency, and mm-scale footprint. Additionally, they must coordinate energy across
Sdistributed subsystems for enhanced viability and scalability. A switched-capacitor (SC)
%= based EHPMU [1] realizes distributed energy sharing but has constrained efficiency and
§dynamic range (<5uW). Also, its single-rail-sharing architecture forces all subsystems
Oto interact with a shared rail, necessitating extra dedicated converters. Existing multi-
@input single-inductor multi-output (MISIMO) EHPMUs [2-7] either consume >100nW
5 quiescent power [3-7], have <1000x dynamic range [3][5], lack full autonomy [3, 4, 6,
S7], or require large inductor (22pH) with low efficiency due to conventional buck-boost
= (CBB) conversion [2]. Furthermore, none of them support distributed systems. As shown
—.in Fig. 8.5.1, we address these limitations with a fully autonomous triple-input hybrid-
O|nductor capacﬁor multi-output (TIHICMQ) EHPMU that can harvest energy from dual
Zlinput sources, regulate three custom output rails, adaptively switch among multi-
2 conversion methods, cold startup (CS) from all the inputs/outputs, and enable energy
Hrecycling and sharing among multiple rails. This EHPMU achieves a 5.8nA quiescent
gcurrent, a wide dynamic range of 8.8x10% a peak efficiency of 90.1%, and a >90%
S reduction in inductor size compared to [2, 7] using a 3x3x1.3mm? 200mQ DCR inductor.
(=3
=To meet these demands, the proposed EHPMU improves the traditional architectures by:
m1) multi-rail energy sharing: this EHPMU extracts energy from a photovoltaic (PV) cell
Nand a thermoelectric generator (TEG) cell while generating three regulated output rails:
T VDIG (0.551t0 0.65V), Vaya (1to 1.1V) and Vo (1.6 to 1.7V) with one power-delivery stage.
Nlt automatically transitions among four operating modes: harvest (Vs t0 Voyrs), Store
m(VINS 10 Vgro), backup (Vgro to Voyurs), @and a proposed recycle mode (Voyrs t0 Vgro), as
Zshown in Fig. 8.5.1. In a distributed network with subsystems having their local energy
harvesters, the recycle mode empowers the EHPMU to recycle and redistribute the
[ojsurplus energy from energy-abundant subsystems to the energy-scarce ones. This
> fosters energy sharing across different voltage domains and the expansion towards more
comprehensive networks; 2) all-rail cold startup (AR-CS): the EHPMU can cold startup
Sfrom any input and output rail. Subsystems can trigger the EHPMU’s startup, allowing
Zthe surplus energy to be reallocated promptly. Thus, subsystems can collectively launch
gand maintain the fiber network, reducing environmental reliance. 3) TIHICMO
Barchitecture: the two off-chip 0.4x0.2mm? flying capacitors (Cy) enables a hybrid-
< inductor-capacitor (HIC) conversion method by serially connecting the inductor and Cry
Sto reduce the inductor voltage, enabling inductor size reduction without sacrificing
mefflaency In addition, a dual-step conversion is proposed for high voltage conversion
‘Bratio. The Ve rail serves as an intermediate level, allowing the energy to be harvested
Sand then recycled, achieving higher overall efficiency. Based on the input and output
gvoltage levels, this EHPMU dynamically adapts its conversion methods among CBB
wconversion [2, 6, 7], buck/boost-based conversion [3, 4], HIC conversion and dual-step
Zconversion, ensuring high efficiency across a wide input/output range.
(=}
wn
"= The left of Fig. 8.5.2. shows the system block diagram of the proposed EHPMU. To
-2minimize the quiescent current and maximize efficiency, several techniques are used: 1)
glnstead of uniformly driving power-stage switches (PSS) with the highest voltage (Vyax)
§[2], a portion of the PSS is driven by the V|4 rail, reducing the switching loss by >70%;
m2) each input and output rail has its own comparator, clock, and pulse-frequency-
Emodulation. The Mode&Gate Control (MGC) incorporates an asynchronous timing
< generator (ATG), activated only by events from input/output rails, further reducing
Sdynamic power; 3) with negligible dynamic loss, we further suppress the quiescent
current without efficiency degradation by a customized 500nm length 1/0 device
standard-cell library, compared with core devices [2]; 4) The EHPMU adopts an ADC-
based current-discharging mechanism for constant peak inductor current (lgaq) control,
eliminating the need for power-intensive comparators, as seen in traditional adaptive-
on-time (AQT) controller [3, 4]. The right of Fig. 8.5.2. shows the schematic of the Cgy
pre-charger and the algorithm for source and load selection, outlined as follows: when
the MGC is triggered, it checks load and source events with a priority: REQ>FULL>MPP.
For each event, the MGC follows the load/source rail priority (V,o>Vaa>Voig,
Ve>Vree>Vsro) to check the corresponding signal for each rail. Power delivery is initiated
when both the source and load are identified.
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Figure 8.5.3. shows the circuit details of the proposed AR-CS, AOT, and adaptive off-
time (AOFT) control along with the timing waveforms. The AR-CS consists of four stages,
with each of the initial three stages featuring a clock, a voltage monitor (VM) or power-
on-reset, and a SC-based converter. The VM regulates the Vp,q and Vyy, rails to ranges
of 0.6 10 0.7V and 0.9 to 1V, respectively. Initially, all the output rails are shorted via M;.
5 and charged concurrently. When the input voltages of the 2"/3 stage exceed the
threshold, the converter is activated and the connection to the subsequent stage is
disabled via the DISy/DIS, signals, allowing the next stage to be charged to a higher
voltage level. Once the Vq rail reaches 1.5V, maximal-power-point tracking (MPPT) and
ADC sampling are enabled. Subsequently, PORgys triggers the main EHPMU and power-
gates the AR-CS. The AOT and AOFT control use a tunable bias current to discharge a
capacitor for lpga control, as shown in the bottom of Fig. 8.5.3. Given that the
Veu/Vea/Vsro rails are digitized by the ADC, the on/off-time calculator adjusts the bias
current to maintain proportionality to the inductor voltage, ensuring constant lpga.

The proposed TIHICMO EHPMU is fabricated in 65nm CMOS. The testbench for CS is
shown in Fig. 8.5.4. The measured waveform shows that the EHPMU successfully cold
startup from the Vi rail, followed by the regulation of output rails and simultaneous
harvesting from Vpy and Vygg rails using fractional open-circuit voltage (FOCV) based
MPPT. The measured waveform also shows the EHPMU’s ability to CS from an output
rail. The subsystem can harvest energy from its local PV cell to charge the Vyy, rail,
triggering the startup of the EHPMU. Then the EHPMU actively recycles the surplus
energy and redistributes it. The EHPMU’s ability of concurrently regulating all rails and
switching among different operating modes is also validated, with a zoomed-in part
showing the transition from harvest mode to backup mode and the initiation of Gy pre-
charging. The measured quiescent power in Fig. 8.5.5. shows a minimum quiescent
current of 5.8nA at 1.6V. The proposed dual-step conversion improves the efficiency by
10% at high voltage conversion ratio. Measurements also show that the EHPMU achieves
a >25% efficiency improvement compared to CBB conversion, a 4-to-7% efficiency
improvement compared to the buck-based conversion, a peak efficiency of 90.1%, and
an efficiency >50% over an 8,8000x dynamic range.

Figure 8.5.6. presents a comparison with the state-of-the-art MISIMO EHPMUs. Among
the state-of-the-art designs shown in table in Fig. 8.5.6, the proposed EHPMU achieves
the lowest quiescent power with the widest dynamic range. Thanks to the HIC
architecture, this EHPMU achieves a >90% inductor size reduction compared to [2, 6]
with a competitive 90.1% peak efficiency and a highest efficiency when delivering 1pA
output current with a 200mQ DCR inductor. Moreover, with the proposed AR-CS
technique and recycle mode, this EHPMU can cold startup from any input and output
rail, and achieve energy sharing across voltage domains, a capability absents in previous
works. All these results and features make this EHPMU well-suited for mm-scale, self-
powered, and distributed systems. Figure 8.5.7. shows a micrograph of the EHPMU with
a1.4x2.0mm? die area.
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Figure 8.5.1: The proposed TIHICMO EHPMU for self-powered distributed fiber 5 —
network with multi-voltage domain energy sharing (top); comparison to the traditional Figure 8.5.2: System block diagram of the proposed TIHICMO EHPMU (left); the
MISIMO architecture (middle); the phases of the four operating modes that the schematic of asynchronous timing generator and C;,, pre-charger (top-right); flow
proposed EHPMU supports (bottom). chart of the source and load selection algorithm (bottom-right).
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Figure 8.5.3: Schematic of the proposed AR-CS (top), on/off-time calculation, Figure 8.5.4: Testing setups for the CS waveforms (top); measured waveform for
adaptive-on-time (AOT) control, and adaptive-off-time (AOFT) control (bottom-left); cold startup from Vg (left) and V,y, rail (middle); measured waveform for rail

the timing waveform for the AR-CS, AOT and AOFT (right). regulation and mode transition with zoomed-in details (bottom).
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Figure 8.5.5: Measured EHPMU quiescent current and harvesting efficiency vs. Vg
(top-left); measured efficiency for recycle and backup mode vs. 1 g, (bottom-left); Figure 8.5.6: Comparison of the proposed EHPMU with state-of-the-art MISIMO
measured efficiency for backup mode vs. Vg and | g, (right). EHPMUs.
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Figure 8.5.7: Die micrograph of the proposed TIHICMO EHPMU.
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