Panoptic Dynamic Voltage Scaling:

A Fine-Grained Dynamic Voltage Scaling Framework for Energy Scalable CMOS Design

> Mateja Putic, Liang Di, Dr. Benton H. Calhoun, and Dr. John Lach **University of Virginia**

> > 2

Panoptic > including everything visible in one view,

- 2 investigate the merits of fine-
- grained header switches,
- 3 major contribution is measured overhead from chip

The CMOS Energy Equation

 $E = \alpha C V_{DD}^2 + I_{static} V_{DD} t$ Active Static Energy Energy

common characteristic of signal processing applications > variable

3

incoming workloads 2 take advantage of these by scaling processing rate to save energy 3 if energy avail. changes, extend lifetime of appl. by degrading performance instead of shutdown

DVS Background

 $r_{opt} = \frac{t_{max}}{t_x} r_{max}$

Optimal energy is achieved when processing rate == incoming workload

4

1 systems w/ dynamic workload >optimal energy achieved when

processing rate == incoming workload 2 work processed as slow as possible while still meeting deadline 3 efficiency of DVS arch. evaluated by range of proc. rates achieved and ovh. of transitions

Overview of Presentation

• Background of DVS Architectures

- Single-Function, Single Rate
- Single-Function, Multi-Rate

DVS Bkg. > DVS archs. for SFSR, SFMR, MF and how each of these process dynamic workloads

Overview of Presentation

PDVS overheads and measured quantities, break-even point calculation, test chip & measurements, results, conclusions

Overview of Presentation

- PDVS overheads and measured quantities
- Break-even Point Calculation
- Test Chip and Measurements
- Results
- Conclusions

PDVS overheads and measured quantities, break-even point calculation, test chip & measurements, results, conclusions

6

Execution

Workload: 0.4 Processing Rate: 1.0

1 SingleVDD, executing single function at single processing rate

- 2 Example algorithm is static schedule with slack
- 3 executed at maximum rate, idle
- until deadline, linear energy savings
- only

Execution

Workload: 0.4 Processing Rate: 1.0

1 SingleVDD, executing single function at single processing rate

- 2 Example algorithm is static schedule with slack
- 3 executed at maximum rate, idle
- until deadline, linear energy savings
- only

Workload: 0.4 Processing Rate: 1.0

1 SingleVDD, executing single function at single processing rate

- 2 Example algorithm is static schedule with slack
- 3 executed at maximum rate, idle
- until deadline, linear energy savings
- only

Schedule of Execution

Workload: 0.4 Processing Rate: 1.0

Workload executed at maximum rate

Idle until deadline is reached

7

- 2 Example algorithm is static schedule with slack
- 3 executed at maximum rate, idle
- until deadline, linear energy savings
- only

Single Function Single Rate

1 Parallel execution architecture 2 Slack exists within algorithm

- 3 Add spatial granularity > ability to

- choose processing rates of
- individual operations within the algorithm

Single Function Single Rate

1 Parallel execution architecture 2 Slack exists within algorithm

- 3 Add spatial granularity > ability to
- choose processing rates of
- individual operations within the algorithm

Single Function Single Rate

Add Spatial Granularity

^B(Sub-block voltage control)

Single V_{DD} Architecture

*

8

1 Parallel execution architecture 2 Slack exists within algorithm

- 3 Add spatial granularity > ability to

- choose processing rates of
- individual operations within the algorithm

Workload: 0.4 Processing Rate: 1.0

Multi-V_{DD} Architecture

1 energy savings is still linear, only available processing rate still maximum

9

9

2 but energy is lower b/c each iteration takes less energy due to slack fill

Workload: 0.4 Processing Rate: 1.0

Multi-V_{DD} Architecture

9

1 energy savings is still linear, only available processing rate still maximum

9

2 but energy is lower b/c each iteration takes less energy due to slack fill

Workload: 0.4 Processing Rate: 1.0

Multi-V_{DD} Architecture

Execution

Workload executed at maximum rate

Idle until deadline is reached 0

9

With sub-block energy savings

maximum

2 but energy is lower b/c each iteration takes less energy due to slack fill

Single Function Single Rate

Multi-V_{DD} Architecture

10

Since optimal energy > proc. rate == work, next logical step is to have multiple processing rates

Single Function Single Rate

Add Temporal Granularity

Single V_{DD} (Rate switching)Multi-V_{DD} Architecture

Since optimal energy > proc. rate == work, next logical step is to have multiple processing rates

Global DVS Architecture

Schedules of Execution

1 now have three rates to choose from, can choose rate closer to

11

11

Workload: 0.4 Processing Rate: 0.5

workload

- 2 schedule still has slack due to
- coarse spatial gran.
- 3 multi-VDD operates in the same
- way but with sub-block energy
- savings

Global DVS Architecture

Schedules of Execution

Workload: 0.4 Processing Rate: 0.5

1 now have three rates to choose from, can choose rate closer to

11

workload

- 2 schedule still has slack due to
- coarse spatial gran.
- 3 multi-VDD operates in the same
- way but with sub-block energy
- savings

Global DVS Architecture

of Execution

Workload: 0.4 Processing Rate: 0.5

Workload executed at lower rate

Less slack time

1 now have three rates to choose from, can choose rate closer to

11

workload

- 2 schedule still has slack due to
- coarse spatial gran.
- 3 multi-VDD operates in the same
- way but with sub-block energy
- savings

Novelty of approach: combination of fine grained switches + low

12

12

Fine Spatial Granularity (Sub-block voltage control)

Novelty of approach: combination of fine grained switches + low

Fine Spatial Granularity (Sub-block voltage control)

Fine Temporal Granularity (Voltage dithering)

Novelty of approach: combination of fine grained switches + low

12

Fine Spatial Granularity (Sub-block voltage control)

Fine Temporal Granularity (Voltage dithering)

12

12

Novelty of approach: combination of fine grained switches + low

Single-Function Multi-Rate

PDVS Architecture

13

13

Enables sub-block voltage control + quickly switch between processing rates, dc-dc conv. for global dith.

90nm Test Chip

1 small overhead introduced by header switches and level shifter

2 global VDD rails were sized sufficiently large so sizing of header switches dominates delay, energy overhead

Workload: 0.4 Processing Rate: 0.415

PDVS Architecture

Schedules of Execution

Can achieve processing rate dramatically closer to workload > dithering, sub-block savings, less area than multi-VDD

Workload: 0.4 Processing Rate: 0.415

PDVS Architecture

Schedules of Execution

Can achieve processing rate dramatically closer to workload > dithering, sub-block savings, less area than multi-VDD

Workload: 0.4 Processing Rate: 0.415

PDVS Architecture

Schedules of Execution Processing rate approximates workload

Dithering and subblock energy savings implemented with less area than Multi-V_{DD}

Can achieve processing rate dramatically closer to workload > dithering, sub-block savings, less area than multi-VDD

16

1 max. rate is lower due to subblock energy savings, enabled by spatial gran.

- 2 Elbows occur at the three static
- processing rates
- 3 EXPLAIN IDEAL > very close

1 max. rate is lower due to subblock energy savings, enabled by spatial gran.

0.4

16

Normalized Workload

0.8

0.6

- 2 Elbows occur at the three static
- processing rates

0.2

0.1

0

0

0.2

3 EXPLAIN IDEAL > very close

16

1 max. rate is lower due to subblock energy savings, enabled by spatial gran.

- 2 Elbows occur at the three static
- processing rates
- 3 EXPLAIN IDEAL > very close

Global DVS Comprehensive Plot

1. Global block architectures 2. subblock architectures

17

Sub-Block DVS Comprehensive Plot

1. Global block architectures 2. subblock architectures

17

PDVS Overheads

- Delay: How long does a switch take?
- Energy: How much energy does it take?
- Measured overheads from test chip implemented in 90nm process

Next logical step is to ask, what are the overheads of PDVS: IDEAL SCHEDULES unrealistic due to real ovh

18

Breakeven Time

To find the point at which switching down to a lower proc. rate vs. staying at the high rate consumes

19

less energy

V _{DD} (V)	1.0	0.77	0.67
Delay (ns)	2.96	4.31	6.50
Active E per Op (pJ)	61.2845	35.5879	28.3758
Add'l Leak per Op (pJ)	0.0013	0.0107	0.0055
Total E per Op (pJ)	61.2845	35.5879	28.3758
Normalized Delay (to Adder)	6.9613	10.1274	15.2947
Nearest Delay (Adder cycles)	7	11	16
Switching Overhead (pJ)	-	6.7085	9.6715
Breakeven Cycles	-	1.2156	1.3853

Notice: 1. Inverse-quadratic trend in energy per op, cmp. to adder 2.

20

V _{DD} (V)	1.0	0.77	0.67
Delay (ns)	2.96	4.31	6.50
Active E per Op (pJ)	61.2845	35.5879	28.3758
Add'l Leak per Op (pJ)	Quadratic Energy Trend		
Total E per Op (pJ)	61.2845	35.5879	28.3758
Normalized Delay (to Adder)	6.9613	10.1274	15.2947
Nearest Delay (Adder cycles)	7	11	16
Switching Overhead (pJ)	-	6.7085	9.6715
Breakeven Cycles	-	1.2156	1.3853

Notice: 1. Inverse-quadratic trend in energy per op, cmp. to adder 2.

20

V _{DD} (V)	1.0	0.77	0.67
Delay (ns)	2.96	4.31	6.50
Active E per Op (pJ)	61.2845	35.5879	28.3758
Add'l Leak per Op (pJ)	0.0013	0.0107	0.0055
Total E per Op (pJ)	61.2845	35.5879	28.3758
Normalized Delay (to Adder)	Nonlinear Scaling Trend		
Nearest Delay (Adder cycles)	7	11	16
Switching Overhead (pJ)	-	6.7085	9.6715
Breakeven Cycles	-	1.2156	1.3853

Notice: 1. Inverse-quadratic trend in energy per op, cmp. to adder 2.

20

V _{DD} (V)	1.0	0.77	0.67
Delay (ns)	2.96	4.31	6.50
Active E per Op (pJ)	61.2845	35.5879	28.3758
Add'l Leak per Op (pJ)	0.0013	0.0107	0.0055
Total E per Op (pJ)	61.2845	35.5879	28.3758
Normalized Delay (to Adder)	6.9613	10.1274	15.2947
Nearest Delay (Adder cycles)	7	11	16
Switching Overhead (pJ)	-	6.7085	9.6715
Breakeven Cycles	-	1.2156	1.3853

Notice: 1. Inverse-quadratic trend in energy per op, cmp. to adder 2.

20

V _{DD} (V)	1.0	0.77	0.67
Delay (ns)	2.96	4.31	6.50
Active E per Op (pJ)	61.2845	35.5879	28.3758
Add'l Leak per Op (pJ)	0.0013	0.0107	0.0055
Total E per Op (pJ)	61.2845	35.5879	28.3758
Normalized Delay (to Adder)	6.9613	10.1274	15.2947
Nearest Delay (Adder cycles)	7	11	16
Switching Overhead (pJ)	-	6.7085	9.6715
Breakeven Cycles	-	1.2156	1.3853

Notice: 1. Inverse-quadratic trend in energy per op, cmp. to adder 2.

20

Observations

Single-Function Single-Rate

- vs. Single-V_{DD}:
 - Energy due to fine spatial granularity (sub-block savings)
 - Area depending on schedule
- vs. Multi-V_{DD}:
 - Energy due to switching overhead
 - Area due to multi-modality

21

Observations for Single-Function Single-Rate If we hold schedule constant

1. slack time of schedules 2. elbows of quantized architectures do not occur in the same places

SFMR Results

Observations

Single-Function Multi-Rate

- vs. Global DVS:
 - Energy due to fine spatial granularity (sub-block savings)
 - Area depending on schedule
- vs. Multi-Rate Multi-V_{DD}:
 - Energy / due to fine temporal granularity (voltage dithering)
 - Area , due to multi-modality

24

Observations for Single-Function Multi-Rate

Results Multi-Function Multi-Rate

	PDVS	Multi- V_{DD}	Single- V_{DD}
VH Add	0	4	4
VM Add	0	4	4
VL Add	0	3	4
Total Add	7	11	12
VH Mult	0	5	8
VM Mult	0	4	8
VL Mult	0	4	8
Total Mult	8	13	24

AR Lattice

25

Architectures have enough components to implement all

benchmarks 2 PDVS saves dynamic energy w/efficient schedules, 3 static energy w/fewer components > high utilization

Observations

Multi-Function Multi-Rate

- vs. Global DVS:
 - Energy due to fine spatial, temporal granularity, reduction in leakage
 - Area due to parallelism
- vs. Multi-Rate Multi-V_{DD}:
 - Energy due to fine temporal granularity, reduction in leakage
 - Area due to multi-modality

Observations for Multi-Function Multi-Rate

Conclusions

- PDVS combines fine spatial, temporal granularity with sub-block headers
- Test chip fabricated
- Breakeven time < 1 operation
- Switching delay < 1 clock
- Area-efficient energy savings

27

header sizing rule of thumb

what are the real implications, through PDVS that you get closest to the ideal energy curve, dithering + sub-block savings is the biggest implication, in an area efficient way

References

- Putic, Mateja, Liang Di, Benton H. Calhoun, John Lach. "Panoptic DVS: A Fine-Grained Dynamic Voltage Scaling Framework for Energy Scalable CMOS Design". ICCD2009, October 2009.
- 2. Liang Di, Mateja Putic, John Lach, and Benton H. Calhoun."Power Switch Characterization for Fine-Grained Dynamic Voltage Scaling" ICCD2008, pages 605-611, October 2008.
- 3. "Investigating Fine-Grained Dynamic Voltage Scaling for Low Power CMOS" Master's Thesis, University of Virginia, 2008.