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Abstract

Wireless microsensors are being used to form large,
dense networks for the purposes of long-term environmental
sensing and data collection. Unfortunately, these networks
are typically deployed in remote environments where energy
sources are limited. Thus, designing fault-tolerant wire-
less microsensor networks with long system lifetimes can
be challenging. By applying energy-efficient techniques at
all levels of the system hierarchy, system lifetime can be ex-
tended. In this paper, energy-efficient techniques that adapt
underlying communication parameters will be presented in
the context of wireless microsensor networks. In particular,
the effect of adapting link and physical layer parameters,
such as output transmit power and error control coding, on
system energy consumption will be examined.

1. Introduction

Recently, researchers have been increasingly interested
in wireless microsensor networks [1, 2, 5]. This rising in-
terest is in large part due to the compelling applications
that will be enabled once wireless microsensor networks
have been deployed [5]. In a wireless microsensor net-
work, hundreds to thousands of small, sensor nodes are
scattered over some environment for the purpose of gath-
ering data. Each of these distributed sensors contain com-
putation and communication elements and can be designed
to provide long-term, remote autonomous environmental
monitoring. When events of interest are detected, sensors
may process the data before sending information about the
environment to a remote basestation. Because of the re-
mote nature of these networks and the size of the individ-
ual nodes, however, nodes do not have access to unlim-
ited energy. Thus, in order to prolong system lifetimes,
energy-efficient algorithms and protocols should be used.
At the same time, these techniques should also be aware
of user-specified quality requirements such as latency and
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data precision. Since these parameters express an applica-
tion’s quality needs, energy-efficient algorithms and proto-
cols must be careful not to compromise this quality while
minimizing energy consumption.

The need to minimize energy consumption while main-
taining user constraints makes the design of wireless mi-
crosensor networks challenging. While techniques to min-
imize the energy consumption of portable, multimedia de-
vices have been studied extensively [3, 4], these techniques
may not be applicable to wireless microsensors. For exam-
ple, while conventional hand-held devices only need to last
hours or days, microsensor nodes need to last several years.
Therefore, different energy-efficient techniques will need to
be applied. In this paper, energy-efficient techniques for
communication among the nodes will be presented. Since
wireless communication over long distances can be expen-
sive, minimizing the energy for communication is very im-
portant. In general, the minimum output transmit power re-
quired to transmit a signal over a distance d is proportional
to d” where 2 <n < 4.

In the design of any communication system, one param-
eter of interest to users is the reliability of the links between
a transmitter and receiver. Reliable data transfer can be pro-
vided either by increasing the output transmit power (Poyz)
of the radio or by adding forward error correction (FEC) to
the data. With the use of FEC, we can decrease the prob-
ability of bit error (Pp) for any fixed value of the output
transmit power. However, FEC will also require additional
processing and thus, additional energy at the transmitter and
receiver. Depending on the FEC algorithm used and the
implementation of the algorithm, the additional processing
may require so much power that any savings made in the
reduction of the output transmit power will become neg-
ligible. In this paper, we attempt to minimize the system
energy required to send data between a transmitter and re-
ceiver by partitioning the communication energy between
the output transmit power and the processing required by
error-correction coding.



2. Energy Cost of Computation

During communication between two nodes, energy is
expended during transmission of the data (output transmit
power) and when framing and error correction is performed.
We define the communication energy to be the sum of the
energy required to transmit data using a radio and the en-
ergy required to perform encoding and decoding of the
data'. A similar definition is introduced in [6] in the context
of portable terminals.

In order to evaluate the communication energy in wire-
less microsensor networks, we have implemented a sensor
node with appropriate processing and communication ele-
ments. Before discussing the tradeoffs that can be made
between coding energy and output transmit power, we will
briefly describe the implementation of our node.

2.1. The xAMPS Wireless Sensor Node

The pAMPS wireless sensor node has the ability to scale
the energy consumption of many different subcomponents
in response to changes in the environment, state of the net-
work, and application requirements in order to maximize
system lifetime and reduce energy consumption of the node.
Thus, all layers of the system can adapt layer-specific pa-
rameters (e.g. error correction scheme) to minimize energy
usage. Figure 1 gives an overview of the architecture of
the sensor node. The node is designed with collaborative
sensor applications in mind. However, the fiexibility of the
architecture allows it to be used in different application sce-
narios.
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Figure 1. Architectural overview of our microsen-
sor node.

Since the uAMPS node is designed with sensing appli-
cations in mind, our initial node contains an acoustic sen-
sor and a seismic sensor. Data sensed by either sensor is

IThis definition does not fully capture the energy of all tasks required
for communication. However, in this paper, we will ignore the energy
required to perform higher protocol layer operations.

passed through an anti-alias filter and directed to an analog-
to-digital (A/D) converter. Once data is sampled by the
sensing subsystem, it is transferred to on-board RAM. The
sensor, analog filters, and A/D collectively use 5mA at 5 V.

The data collected is processed by a StrongARM (SA-
1100) microprocessor. Selected for its low power consump-
tion, high performance, and static CMOS design, the SA-
1100 can be adapted to support dynamic voltage scaling.
The clock speed can be dynamically adjusted from 50 to
206 MHz, while the voltage supply has a range of 0.9 to
1.5 V. In addition to the processor, ROM and RAM are also
on-board. A lightweight, multi-threaded “y-OS” running
on the SA-1100 has been customized to allow software to
scale the energy consumption of the processor. The p-OS,
signal processing algorithms, and the network protocols are
stored in ROM.

In order to deliver data or control messages to neigh-
boring nodes, the data is transmitted wirelessly using a ra-
dio based on a commercial single-chip 2.4 GHz transceiver
with an integrated frequency synthesizer [9]. The on-board
phase-locked loop (PLL), transmitter chain, and receiver
chain are capable of being shut-off via software or hard-
ware control for energy savings. To transmit data, an ex-
ternal voltage-controlled oscillator (VCO) is directly mod-
ulated. By directly modulating the VCO, the circuit im-
plementation is simpler and power consumption is reduced.
However, the amount of data that can be transmitted contin-
uously is limited. The radio module is capable of transmit-
ting up to 1 Mbps at a range of up to 10 m.

2.2, Computation Energy Model

The encoding and decoding of error-correcting codes can
be performed on different platforms. In our initial system,
coding will be performed on the StrongARM using C. In-
stead of modeling the energy required for encoding and de-
coding the data, the energy consumed will be directly mea-
sured.

2.3. Radio Energy Model

The average energy consumption of radio communica-
tion can be modeled by:

Erodio = Etg + Eprg
= [Ptx (Ton—tx + Tstartup) + PoutTon—tz]
+ Prz‘ (Ton—r:c + Tsturtup) (1)

where Py /p, is the power consumption of the transmit-
ter/receiver, Py, is the output transmit power which drives
the antenna, Ty, ¢4 /ry iS the transmit/receive on-time (ac-
tual data transmission/reception time), and T's;qrtyp 1S the
start up time of the transceiver as shown in Figure 2. Note



that if L is the size of the packet in bits and R is the data
rate in bits per second, then T, ¢ /0n—rz = L/ R.

L—F———%%J

o <FEEHR—F

Py

Baseband|
DSP

Figure 2. A diagram of the radio model.

In this radio model, the power amplifier needs to be
on only when communication occurs. In addition, during
the startup time, no data can be sent or received by the
transceiver. This is because the internal phase-locked loop
(PLL) of the transceiver must be locked to the desired car-
rier frequency before data can be demodulated successfully.

It is necessary to highlight a few key points about the
radio we use in our design. First, note that the power con-
sumption of the transceiver (Py;/,,) dominates the output
transmit power (P,,:). Since wireless sensor networks are
designed to operate over short distances, this is a reason-
able assumption. In addition, the transceiver power does
not vary over the data rate, R. At the 2.4 GHz frequency
band (as in other gigahertz bands), the power consump-
tion of the transceiver is dominated by the frequency syn-
thesizer which generates the carrier frequency. Hence, to
a first order, R does not affect the power consumption of
the transceiver [10]. Second, the startup time can have a
large impact on the average energy per bit (E}) since wire-
less sensor networks tend to communicate using very short
packets. In order to save power, a natural idea is to turn off
the radio during idle periods. Unfortunately, when the radio
is needed again, a large amount of power is spent to turn it
back on; transceivers today require an initial startup time on
the order of hundreds of microseconds during which large
amounts of power is wasted. Given that P;, = 81 mW,
P, = 180 mW, Tytortup = 450 us and P,y ~ 0 dBm,
the effect of the startup transient is shown in Figure 3, where
the energy per bit is plotted versus the packet size. We
sce that as packet size is reduced, the energy consumption
is dominated by the startup transient and not by the active
transmit and receive time. Hence it is important to take this
inefficiency into account when designing energy-efficient
communication protocols. The radio parameters used here
are based on the commercial low power transceiver we are
using in the uAMPS node.
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Figure 3. Effect of startup transient where R =
1 Mbps, Tstartup ~ 450 ps, Py = 81 mW, P, =
180 mW and P,,; = 0 dBm.

3. Impact of Link Layer Parameters on System
Energy

In general, the “link layer” has a variety of purposes in
the protocol stack. One of the tasks of the link layer is to
specify the encodings and length limits on packets such that
messages can be sent and received by the underlying phys-
ical layer. The link layer is also responsible for ensuring
reliable data transfer. In the following section, the impact
of varying error control on the energy consumption of our
node will be discussed. In [8, 7], a similar exploration of the
impact of adapting packet size and error control on system
energy efficiency was conducted.

3.1. Data Reliability

The level of reliability for the link between transmitter
and receiver will depend on the needs of the application and
on user-specified constraints. In many wireless sensor net-
works, such as machine monitoring and tank detection net-
works, the actual data will need to be transferred with an
extremely low probability of error.

In a wireless microsensor network, we will assume that
nodes communicate over a frequency non-selective, slow
Rayleigh fading channel. Consider one node transmit-
ting data to another over such a channel using the radio
described in Section 2.3. The radio presented uses non-
coherent binary frequency-shift keying (FSK) as the modu-
lation scheme. For comparison purposes, the best achiev-
able probability of error using raw, non-coherent binary
FSK over a slowly fading Rayleigh channel will be pre-
sented.

In general, v, = a?(Ey/No), where vy, is the



received energy per bit to noise power ratio and « is a
random variable describing the attenuation property of the
fading channel. It is shown in [11] that the probability
of bit error using non-coherent, orthogonal binary FSK is
P, = E;T; Unfortunately, this does not directly tell us

the transmit power P,,; that must be used in order to get a
certain probability of error. In order to determine Py as a
function of P,,:, we must consider the implementation of
the radio. In general, one can convert 7y, .5, to P,y using

(&) Pout 1
‘NO T

Plossd WNtthz
where Pj,ss represents the large-scale path loss, @ is the
average attenuation factor due to fading, W is the signal
bandwidth, N, is the thermal noise and N, is the noise
contributed by the receiver circuitry known as the noise fig-
ure. In general, Pioss ¢ 75,2 <n < 4.

An estimate for Pj,;sa ~ 70 dB. With a signal band-
width of W = 1 MHz, Ny, = —174 dBm and N,, ~
10 dB, we find that P,,; = Ej/Ng — 34 dBm assuming a
data rate of 1 Mbps. This equation can be used to find the
transmit power needed to obtain a certain average E/Np.
The uncoded curve in Figure 4 shows the probability of bit
error plotted against the output power of the transmitter for
an uncoded signal.

Since using a power amplifier alone is highly inefficient,
forward error correction (FEC) is applied to the data to de-
crease the probability of error. However, some additional
processing energy must be expended. The additional en-
ergy, denoted by E4,,, to both encode and decode the data
will need to be considered. Additional energy cost will also
be incurred during the communication of the message since
the length of each frame will increase. If the raw transmis-
sion rate R remains the same, then both the transceiver and
output amplifier will be on for a longer duration.

Many types of error-correcting codes can be used to im-
prove the probability of bit error. In this paper, we will only
consider convolutional codes with varying coding rates.
The upper bound on P, can be determined by applying

1 [ee]
P <y > BaP(d)

d=dsree

where d represents the Hamming distance between some
path in the trellis decoder and the all-zero path, {84} are
the coefficients of the first derivative of the transfer function
T(N, D) with respect to N, { P(d)} are the first-event error
probabilities, and dfree 1 the minimum free distance [11].

Figure 4 shows the P, for different code rates and vary-
ing constraint lengths. These results were obtained using
MATLAB simulation. Note that the probabilities shown as-
sumes the use of a hard decision Viterbi decoder at the re-
ceiver.
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Figure 4. The probability of bit error of several dif-
ferent rate convolutional codes plotted versus the
transmit power for the radio described in Section
2.3. Pyss = 70dB, N,; = 10dB, and R = 1 Mbps.
The number of information bits is 10000. Resuits
were generated using MATLAB.

3.2. Energy Consumption of Coding

While the bounds on the performance of convolutional
codes can be theoretically determined as shown above, the
energy required to encode and decode will vary depending
on the underlying architecture. In addition, since convolu-
tional encoding of a bit stream will increase the size of the
packet by approximately 1/ R, L will also increase, thereby
increasing the radio energy required to transmit a packet. If

we denote the energy to encode as F (S';L and decode data as

E‘gﬁ,, then the total energy cost of the communication can
be derived from (1) as

E = -Ptz (Ton—tw + Tstartup) + PoutTon—t:c + E((izi,

+ Py (Ton—ra: + Tstartup) + E(Ezﬁy

@

Given this model, we can then derive the average energy to
transmit, receive, encode and decode each information bit.
If R is the code rate and L is the packet length transmitted,
then the number of information bits is L' ~ LR,. Thus, the
total energy per information bit, B, = E/L'.

In general, for convolutional codes, the energy re-
quired to encode data is negligible. However, perform-
ing Viterbi decoding on the StrongARM using C can
be computationally-intensive and is likely to be energy-
intensive?. We have measured the energy per useful bit
required to decode rate 1/2 and 1/3 convolutional codes

2By optimizing and rewriting the code in assembly, it is possible to gain
a factor of 5 to 10 reduction in energy consumption.



on the SA-1100. We denote the average decode energy
per information bit as E((;g,’b. The energy to decode 1/2-
rate codes is shown in Figure 5. From our measurements,
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Figure 5. Measured decoding energy per useful bit
for R. = 1/2 codes with 3 to 9

we were able to make a couple of key observations. First,
the energy consumption scales exponentially with the con-
straint length. This is expected since the number of states
in the trellis increases exponentially with constraint length.
We also observed that the energy consumption scems to be
independent of the rate. This is reasonable since the rate
only affects the number of bits sent over the transmission. A

lower rate code does not necessarily increase the power con- -

sumption since the number of states in the Viterbi decoder
is unaffected. Therefore, given two convolutional codes C 4
and C, both with constraint lengths K, where R¢, < Re,,
the per bit energy to decode C; and C; is the same even
though more bits are transmitted when using C;.

Given the data in Figure 5, we can now determine which
convolutional code to use to minimize the energy consumed
by communication for a given probability of error. In Fig-
ure 6, the total energy per information bit £} is plotted
against P,. Figure 6 shows that the energy per bit using
no coding is lower than that for coding. The reason for this
result is that the energy of computation, i.e. decoding, dom-
inates the energy used by the radio for the channel we have
described in Section 3.1. For example, assuming the model
described in (2) and P,,; = 0 dBm, the communication en-
ergy to transmit and receive per useful bit foran R, = 1/2
code is 168 nlJ. Even if we assume P,,; = 20 dBm, the
communication energy per bit is merely 366 nJ. On the
other hand, the energy to decode an R, = 1/2,K = 3
code on the SA-1100 is measured to be 2.2 pJ per bit with
a latency of 64 ms. These results imply that using the Stron-
gARM to perform error correction coding is extremely in-
efficient’.

3Note that the x-axis of the graph extends below 10 ©. For such low
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Figure 6. The energy per useful bit plotted against
P, of an uncoded signal and a few convolutional
codes with different rates and constraint lengths.
(Pross = 70dB, N, = 10 dB, R = 1 Mbps). The
number of information bits is 10000. The decoder
is implemented in C on a SA-1100.

Since the use of the StrongARM to perform Viterbi de-
coding is highly energy inefficient, a dedicated integrated
circuit solution to perform decoding is preferred. To ex-
plore the power characteristics of dedicated Viterbi chips,
we implemented one-half rate Viterbi decoders with differ-
ent constraint lengths and synthesized them using 0.18 ym
TSMC ASIC technology. Our designs are fully parallel im-
plementations of the Viterbi algorithm in which a separate
add-compare-select (ACS) unit is used for each state. In
addition, the designs use the one pointer traceback method
of implementing the survivor path registers. Using Synop-
sys Power Compiler, we estimated the energy per bit used
by our designs during the decoding of twenty thousand en-
coded information bits. Figure 7 shows the energy per bit
for various constraint lengths. Using our implementation,
in addition to our radio model, we can determine the min-
imum energy code to use for a given probability of error.
In Figure 8, the total energy per information bit E} is plot-
ted against P,. From the graph, it is clear that the enecrgy
used by the dedicated Viterbi decoder is insignificant com-
pared to that of the radio tranceiver energy. In this case, the
use of any convolutional code has very little impact on the
energy consumption of communication. Furthermore, the
benefits gained from the use of most of the convolutional
codes exceed the energy costs in hardware; thus, coding is
always recommended. Figure 8 provides the additional in-
sight that high rate codes use less energy per bit despite re-
quiring higher output transmit power (Figure 8) than lower

probabilities of error, these results may not be entirely valid. We only show
the results below 10 2 so that the different codes can be distinguished.
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Figure 7. Measured decoding energy per useful bit
for R, = 1/2 codes with 3 to 7 using our synthe-
sized VLSI implementation.
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Figure 8. The energy per useful bit plotted against
P, using no coding and various convolutional
codes. (P53 = 70 dB, N, = 10dB, R =
1 Mbps). The number of information bits is 20000.

rate codes for the same probability of bit error. This is pri-
marily due to the fact that high rate codes use less bits dur-
ing transmission than 1/2-rate codes.

4. Conclusion

In this paper, we have demonstrated how to minimize
the communication energy required for point-to-point com-
munication. In particular, we considered how to adjust the
transmit power and the underlying convolutional coding al-
gorithm in order to achieve a desired probability of error
using minimal energy. If a microprocessor (SA-1100) is
used to implement the Viterbi algorithm, it is generally bet-
ter to use no coding since the decoding energy is enormous.

On the other hand, the use of a dedicated Viterbi decoder
can lower the decoding energy per information bit by up to
five orders of magnitude. As a result, sensor data can be en-
coded using a convolutional code to allow for lower output
transmit power.
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