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Rapid reductions in power and size of SoC have paved the way for mm-scale textile-
based self-powered systems capable of sensing a variety of biological and environmental
data such as sodium, glucose, temperature, and neural signals [1,3-6]. SoCs built for
these applications need to be fully autonomous and miniaturized, capable of continuous
sensing at nW-level to operate from scarce amounts of harvested energy, and able to
communicate in a distributed sensing network. A prior smart E-textile system [1] enables
self-powered Na* sensing but is built with cm-scale commercial-off-the-shelf (COTS)
components that consume >4mW. A mm-scale system-in-fiber in [2] with COTS
1 components requires batteries for >10uW power. For systems using custom SoCs with
' nW power and mm-scale form factor [3-6], a base station is required to provide light
& (>3Klux [4], >60Klux [5]) to communicate and power the devices. This leads to reduced
— system autonomy and an inability for direct inter-SoC communication. We address these
~ limitations with a fully autonomous self-powered system-on-chip (SoC) that can be
S S distributed along a fiber strand, capable of simultaneously harvesting energy,
2 2 cooperatively scaling performance, sharing power, and booting-up with other SoCs in-
S SHfiber. The SoC achieves 33nW power consumption for the whole chip under 92Lux light
uand can reduce control power down to 2.7nW for the energy harvesting and power
8 £ management unit (EHPMU). With the proposed power sharing and cooperative dynamic
8 voltage and frequency scaling (DVFS), the proposed SoC reduces the illuminance needed
H to stay alive by >7x down to 12Lux. We integrate the SoC into a 2.2x1mm cross-section
S polymer fiber with an embedded electrical bus via a 4.7x3.7mm interposer board, as
o shown in Fig. 15.1.1 (bottom). The timing waveform in Fig. 15.1.1 (right) shows how
© the SoCs can cooperatively scale their performance based on both the local [7-9] and
w adjacent SoCs’ conditions. This allows the energy and performance of all the in-fiber
= SoCs to be flexibly and jointly balanced, thereby improving the system viability and
Y o adaptability.

gngre 15.1.2 (left) shows the architecture of the proposed nanowatt system-in-fiber
2 (NanoSiF) and the SoC. The chip supports sustainable in-fiber operations by: 1)
o distributed energy harvesting: instead of powering the system from an aggregated energy
Esource, the proposed architecture distributes SoCs along the fiber, which enables each
>SoC to harvest energy simultaneously and significantly relieves the dependence on
“3 environment; 2) power sharing: the EHPMU harvests from a PV cell and provides four
moutputs Voig(~0.58V), Vi p0(0.95V), V gcar (1-1.2V), and Vgyage(1-1.2V). The Vgyare rail is
* shared by all the SoCs in-fiber. The output of the 2" stage (buck-boost) converter can
© & be connected to either Vo OF Vguage OF both rails, which allows a flexible set of power
;.; management options, including a) sharing power with Vgyage rail when the harvested
5 energy is surplus; b) pulling power from Vgyage rail when local energy is scarce; c)
—isolating Vi oca and Vgyage rails to allow the SoC to act as an isolated power island if Vgyare
Sis collapsing. In this way, all the energy harvested along the fiber can be redistributed
ﬁand reused, and local regions of the fiber can stay active even when other regions are
g without power; 3) ultra-low-power (ULP) digital core and sensor: for ULP sensing and
g processing, a digital core [7] comprising a dynamic-leakage-suppression (DLS) logic
. based SRAM and a scalable DLS RISC-V processor, along with a pW temperature sensor
o[10] are implemented; 4) ripple boot-up (RB): instead of programming each SoC
2 |nd|V|duaI|y [3-6], a power-gateable on-chip 4928 flip-flop-based RB RAM (RBR) enables
3autonomous instruction memory programming via a RB procedure. Each SoC can
5 customize the boot code provided to the next SoC along the fiber. Therefore, only one
%NVM is needed for all the SoCs in-fiber, achieving a minimal number of discrete
& components; 5) cooperative DVFS: with the proposed RBR, an SoC can read the energy
= conditions of adjacent SoCs and perform DVFS accordingly to share more power with
g SoCs in poor conditions, allowing the entire fiber system to remain operational. Figure
"5 15.1.2 (bottom-right) shows the flow chart for the cooperative DVFS.

o
% Figure 15.1.3 shows the architecture and block diagram of the proposed EHPMU. Prior
= . - . . .
5 designs suffer from cascade efficiency loss [11], demand off-chip maximum power point
E tracking (MPPT) and an excessive number of converters [12], or do not have cold start
uJCIFCUItS for deployability [13]. Our two-stage topology directly powers the load
= components with minimum stages of converters, which avoids cascade loss [11]. The
= sub nW power-gateable two-dimensional MPPT [7], including a fractional-open-circuit-
“voltage based pulse frequency modulation (PFM) and a conversion ratio modulation
(CRM), maximizes the energy extracted from the PV cell. And at low Vpy, the MPPT is
automatically power gated with retention cells to improve the efficiency in poor

conditions. To achieve low area and ULP, the 2 stage converter is only triggered when
Vpig iS above Viery OF below Vger, A local asynchronous loop is then activated to overclock
the 2" stage converter and the mode controller to quickly regulate the V;,q rail back to
Veern- Compared to previous work, where the extra harvested power is discarded [7] or
a 10MHz high-frequency clock is needed [13], this design shares the surplus energy
with other SoCs without any extra high-frequency clocks. The sharing controller keeps
monitoring the Vigca. and Vgyage rails to decide 2™ stage EHPMU output connection To
avoid sinking the Vgyage rail before the chip cold starts, a back-to-back switch is
implemented with a default-output-high level shifter to isolate the Vgape and V, oca, rails,
as shown in Fig. 15.1.3 (top-right). Combining all these techniques, the EHPMU achieves
a 2.7nW minimum control power, >60% peak efficiency for each stage, and full autonomy
with a 0.516mm? area. The RBR includes two SPI slaves and a 492B register. The SPI
slave enters NVM mode once it receives a specific command to imitate the COTS NVM,
allowing SoCs to boot-up from either an NVM or RBR. The fiber integration process is
shown in Fig. 15.1.3 (bottom-right). The polymer fiber is thermally drawn from a
Polyetherimide (PEI) perform with six embedded copper wires. The integration technique
includes: 1) the top layer of the PEI material is removed to create pockets and expose
the copper wires; 2) the wires are cut in the middle; 3) the SoC is wire-bonded onto an
interposer which is then soldered onto the exposed wires, followed by encapsulation
with UV-cure epoxy.

The SoC is fabricated in 65nm CMOS. A benchtop testing setup is shown in Fig. 15.1.4
(top), where two SoCs are connected over Vguage and SPI ports. The measured waveform
shows that the SoCs can share power with each other and isolate Voga from the Vgyage
rail when it droops. The measured ripple boot-up waveform (Fig. 15.1.4 bottom) shows
that SoC1 can cold start, boot-up from the NVM, and execute the program to turn on its
RBR, followed by SoC2 booting-up from SoC1. The measured cooperative DVFS
waveform shows that once SoC1 gets into a dark condition, it changes its RBR value to
indicate a help request. SoC2 keeps reading SoC1’s RBR value, and when it detects the
request, it scales itself down to share more power with the Vgyage rail. Figure 15.1.5
shows the measured efficiency for the EHPMU across Vpy and Pyyr. The EHPMU achieves
a62.7%, 74.8%, 72.6% peak efficiency for the boost converter and buck-boost converter
in boost and buck mode, respectively, with a 2.7nW minimum control power. The system
power breakdown for the full chip is measured (Fig. 15.1.5 bottom-left) at its poorest
harvesting point. The measured minimum voltage/Lux required to keep an SoC alive is
180mV/90Lux (across 11 dies). When adjacent SoCs can share 50nW power with Vgyare
rail, the required Lux for an SoC to stay alive can be decreased by >7x.

Figure 15.1.6 presents the comparison with the state-of-the-art fiber systems and
microsystems. The SoC achieves 33nW full chip power from the harvesting input and
can maintain continuous sensing under the poorest of lighting conditions. With the
EHPMU, the SoC achieves distributed energy harvesting and multi-chip power sharing,
enabling an SoC to survive in a >7x darker environment. Thanks to the proposed ripple
boot-up function, the SoCs in-fiber can boot-up and communicate with each other, which
is not supported by previous work. Figure 15.1.7 shows the die micrograph of the SoC
and comparison with state-of-the-art switched capacitor based multi-output EHPMUs.
The proposed EHPMU achieves the lowest control power of 2.7nW with high efficiency
and a small area of 0.516mm2. With a 2.2x1mm? cross-section fiber, the SoC is shown
to be fully compatible with the post-draw integration technique for fiber integration. All
these results and features make this SoC well-suited for ULP SiF applications.
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Figure 15.1.1: The proposed NanoSiF with distributed cooperative energy harvesting,

power sharing, and ripple boot-up (top); comparison of the state-of-the-art vs. the Figure 15.1.2: Architecture of the proposed NanoSiF and system block diagram of
proposed NanoSiF (bottom-left); principle of the proposed power sharing and the proposed SoC (left); power sharing control scheme (right-top); flow chart of the
cooperative DVFS (bottom-right). cooperative DVFS control algorithm (right-bottom).
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Figure 15.1.3: Block diagram of the EHPMU (top), ripple boot-up, and asynchronous Figure 15.1.4: Teslihg setups (top-left); measured power sharing waveforms (top-
communication (bottom-left); buck-boost mode control, back-to-back switch, and right); measured ripple boot-up waveform (top-left); measured local DVFS and

fiber integration (bottom-right). cooperative DVFS waveform (top-right).
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Figure 15.1.5: Measured EHPMU efficiency across Vp, and output power (top); “caicuiated from the paper

measured full chip power breakdown at 0.183V V,,, under 92Lux light, 1.2Hz, 0.5V "*Commercial off-the-sheif products

Vey, 0.1V (bottom-left); measured minimal voltage/Lux for the SoC to cold startup Figure 15.1.6: Comparison of the NanoSiF SoC with prior self-powered miniaturized
and stay alive with/without power sharing (bottom-right). SiF and microsystems.
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Figure 15.1.7: Comparison table vs. state-of-the-art SC multi-output EHPMUs (top);
die photo of the NanoSiF SoC with highlighted PADs (left/right SPIs, VSS, Vgy,ge) for
fiber integration (bottom).

* 2023 |EREhotesnational Selidndtads Gircwts &Rl GRaries. Downloaded on May 07,2023 at 21:44:22 uﬂ?ﬁc%ﬁ&&%ﬁ&é&%{%&l 89y©2023 IEEE



