VLSI Design Group

Navigation

Search This Site

Publications

Export 29 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is G  [Clear All Filters]
2019
J. Moody, Dissanayake, A., Bishop, H., Lu, R., Liu, N. X., Duvvuri, D., Gao, A., Truesdell, D. S., N. Barker, S., Gong, S., Calhoun, B. H., and Bowers, S. M., A -106dBm 33nW Bit-Level Duty-Cycled Tuned RF Wake-up Receiver, in 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019.
J. Moody, Dissanayake, A., Bishop, H., Lu, R., Liu, N. X., Duvvuri, D., Gao, A., Truesdell, D. S., N. Barker, S., Gong, S., Calhoun, B. H., and Bowers, S. M., A -106dBm 33nW Bit-Level Duty-Cycled Tuned RF Wake-up Receiver, in 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019.
J. Moody, Dissanayake, A., Bishop, H. L., Lu, R., Liu, N. X., Duvvuri, D., Gao, A., Truesdell, D. S., N. Barker, S., Gong, S., Calhoun, B. H., and Bowers, S. M., A Highly Re-configurable Bit-level Duty Cycled TRF Receiver Achieving -106 dBm Sensitivity and 33 nW Average Power Consumption, IEEE Solid-State Circuits Letters (SSCL), Special Issue on VLSI (invited paper), 2019.
J. Moody, Dissanayake, A., Bishop, H. L., Lu, R., Liu, N. X., Duvvuri, D., Gao, A., Truesdell, D. S., N. Barker, S., Gong, S., Calhoun, B. H., and Bowers, S. M., A Highly Re-configurable Bit-level Duty Cycled TRF Receiver Achieving -106 dBm Sensitivity and 33 nW Average Power Consumption, IEEE Solid-State Circuits Letters (SSCL), Special Issue on VLSI (invited paper), 2019.
P. Bassirian, Moody, J., Lu, R., Gao, A., Manzaneque, T., Roy, A., N Barker, S., Calhoun, B. H., Gong, S., and Bowers, S. M., Nanowatt-Level Wakeup Receiver Front Ends Using MEMS Resonators for Impedance Transformation, IEEE Transactions on Microwave Theory and Techniques, 2019.
P. Bassirian, Moody, J., Lu, R., Gao, A., Manzaneque, T., Roy, A., N Barker, S., Calhoun, B. H., Gong, S., and Bowers, S. M., Nanowatt-Level Wakeup Receiver Front Ends Using MEMS Resonators for Impedance Transformation, IEEE Transactions on Microwave Theory and Techniques, 2019.
2020
A. Dissanayake, Moody, J., Bishop, H. L., Truesdell, D. S., Muhlbauer, H., Lu, R., Gao, A., Gong, S., Calhoun, B. H., and Bowers, S. M., A -108dBm Sensitivity, -28dB SIR, 130nW to 41μW, Digitally Reconfigurable Bit-Level Duty-Cycled Wakeup and Data Receiver, in IEEE Custom Integrated Circuits Conference (CICC), 2020.
A. Dissanayake, Moody, J., Bishop, H. L., Truesdell, D. S., Muhlbauer, H., Lu, R., Gao, A., Gong, S., Calhoun, B. H., and Bowers, S. M., A -108dBm Sensitivity, -28dB SIR, 130nW to 41μW, Digitally Reconfigurable Bit-Level Duty-Cycled Wakeup and Data Receiver, in IEEE Custom Integrated Circuits Conference (CICC), 2020.
S. Gupta, Truesdell, D. S., and Calhoun, B. H., A 65nm 16kb SRAM with 131.5pW Leakage at 0.9V for Wireless IoT Sensor Nodes, in 2020 IEEE Symposium on VLSI Circuits (VLSI), 2020.PDF icon A 65nm 16kb SRAM with 131.5pW Leakage at 0.9V for Wireless IoT Sensor Nodes.pdf (935.56 KB)
S. Z. Ahmed, Truesdell, D. S., Tan, Y., Calhoun, B. H., and Ghosh, A. W., A comprehensive analysis of Auger generation impacted planar Tunnel FETs, Solid-State Electronics, 2020.
T. Ajayi, Cherivirala, Y. K., Kwon, K., Kamineni, S., Saligane, M., Fayazi, M., Gupta, S., Chen, C. - H., Sylvester, D., Blaauw, D., Dreslinski, Jr, R., Calhoun, B. H., and Wentzloff, D. D., Fully Autonomous Mixed Signal SoC Design & Layout Generation Platform, IEEE Hot Chips 32 Symposium (HCS). 2020.
D. S. Truesdell, Ahmed, S. Z., Ghosh, A. W., and Calhoun, B. H., Minimum-Energy Digital Computing with Steep Subthreshold Swing Tunnel FETs, IEEE Journal of Exploratory Solid-State Computational Devices and Circuits (JxCDC), 2020.PDF icon Minimum-Energy Digital Computing With Steep Subthreshold Swing Tunnel FETs.pdf (1.02 MB)
T. Ajayi, Kamineni, S., Cherivirala, Y. K., Fayazi, M., Kwon, K., Saligane, M., Gupta, S., Chen, C. - H., Sylvester, D., Blaauw, D., Dreslinski, Jr, R., Calhoun, B., and Wentzloff, D. D., An Open-source Framework for Autonomous SoC Design with Analog Block Generation, in 28th IFIP/IEEE International Conference on Very Large Scale Integration, Salt Lake City, UT, USA. (Nominated for Best Paper Award), 2020.

Pages