VLSI Design Group

Navigation

Search This Site

Publications

Export 237 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
D. S. Truesdell, Liu, X., Breiholz, J., Gupta, S., Li, S., and Calhoun, B. H., NanoWattch: A Self-Powered 3-nW RISC-V SoC Operable from 160mV Photovoltaic Input with Integrated Temperature Sensing and Adaptive Performance Scaling, in 2022 IEEE Symposium on VLSI Circuits (VLSI), (Equally-Credited Authors), 2022.PDF icon NanoWattch A Self-Powered 3-nW RISC-V SoC Operable from 160mV Photovoltaic Input with Integrated Temperature Sensing and Adaptive Performance Scaling.pdf (11.11 MB)
D. S. Truesdell and Calhoun, B. H., Channel Length Sizing for Power Minimization in Leakage-Dominated Digital Circuits, in IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2018.
D. S. Truesdell, Ahmed, S. Z., Ghosh, A. W., and Calhoun, B. H., Minimum-Energy Digital Computing with Steep Subthreshold Swing Tunnel FETs, IEEE Journal of Exploratory Solid-State Computational Devices and Circuits (JxCDC), 2020.PDF icon Minimum-Energy Digital Computing With Steep Subthreshold Swing Tunnel FETs.pdf (1.02 MB)
D. S. Truesdell, Li, S., and Calhoun, B. H., A 0.5V 560kHz 18.8fJ/Cycle Ultra-Low Energy Oscillator in 65nm CMOS with 96.1ppm/°C Stability Using a Duty-Cycled Digital Frequency-Locked Loop, in 2020 IEEE Symposium on VLSI Circuits (VLSI), 2020.PDF icon A 0.5V 560kHz 18.8fJ_Cycle Ultra-Low Energy Oscillator in 65nm CMOS with 96.1ppm_C Stability Using a Duty-Cycled Frequency-Locked Loop.pdf (2.67 MB)
D. S. Truesdell, Dissanayake, A., and Calhoun, B. H., A 0.6-V 44.6-fJ/Cycle Energy-Optimized Frequency-Locked Loop in 65-nm CMOS With 20.3-ppm/°C Stability, IEEE Solid-State Circuits Letters (SSCL), 2019.PDF icon A 0.6-V 44.6-fJ Cycle Energy-Optimized Frequency-Locked Loop in 65-nm CMOS With 20.3-ppm C Stability.pdf (1.64 MB)
D. S. Truesdell, Breiholz, J., Kamineni, S., Liu, N. X., Magyar, A., and Calhoun, B. H., A 6–140-nW 11 Hz–8.2-kHz DVFS RISC-V Microprocessor Using Scalable Dynamic Leakage-Suppression Logic, IEEE Solid-State Circuits Letters (SSCL), 2019.PDF icon A 6–140-nW 11 Hz–8.2-kHz DVFS RISC-V Microprocessor Using Scalable Dynamic Leakage-Suppression Logic (1.63 MB)
D. S. Truesdell and Calhoun, B. H., A Single-Supply 6-Transistor Voltage Level Converter Design Reaching 8.18-fJ/Transition at 0.3-1.2-V Range or 44-fW Leakage at 0.8-2.5-V Range, IEEE Solid-State Circuits Letters (SSCL), 2020.PDF icon A Single-Supply 6-Transistor Voltage Level Converter Design Reaching 8.18-fJ_Transition at 0.3-1.2-V Range or 44-fW Leakage at 0.8-2.5-V Range.pdf (1.06 MB)
W
J. Wang and Calhoun, B. H., Standby Supply Voltage Minimization for Reliable Nanoscale SRAMs, in Solid State Circuits Technologies, J. W. Swart, Ed. INTECH, 2010.
J. Wang and Calhoun, B. H., Minimum Supply Voltage and Yield Estimation for Large SRAMs Under Parametric Variations, Transactions on VLSI Systems (TVLSI), 2011.
L. Wang, Skadron, K., and Calhoun, B. H., Dark vs. Dim Silicon and Near-Threshold Computing, in Dark Silicon Workshop (DaSi), 2012.
J. Wang, Nalam, S., Qi, J., Mann, R. W., Stan, M., and Calhoun, B. H., Improving SRAM Vmin and Yield by Using Variation-Aware BTI Stress, in CICC, San Jose, CA, 2010.
J. Wang, Hoefler, A., and Calhoun, B. H., An Enhanced Canary-based System with BIST for SRAM Standby Power Reduction, Transactions on VLSI Systems (TVLSI), 2011.
J. Wang, Nalam, S., and Calhoun, B. H., Analyzing Static and Dynamic Write Margin for Nanometer SRAMs, in International Symposium on Low Power Electronics and Design, 2008, pp. 129-134.
A. Wang, Calhoun, B. H., Verma, N., Kwong, J., and Chandrakasan, A., Ultra-Dynamic Voltage Scaling for Energy Starved Electronics, in Proc. of GOMAC Tech, 2007.
J. Wang and Calhoun, B. H., An Enhanced Adaptive Canary System for SRAM Standby Power Reduction, in TECHCON, 2008.
A. Wang and Calhoun, A. Chandrakas, Sub-threshold Design for Ultra Low-Power Systems. Springer, 2006.
J. Wang, Singhee, A., Rutenbar, R. A., and Calhoun, B. H., Two Fast Methods for Estimating the Minimum Standby Supply Voltage for Large SRAMs, Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, pp. 1908-1920, 2010.
J. Wang and Calhoun, B. H., Techniques to Extend Canary-based Standby VDD Scaling for SRAMs to 45nm and Beyond, IEEE Journal of Solid-State Circuits, vol. 43, pp. 2514-2523, 2008.
J. Wang, Singhee, A., Rutenbar, R. A., and Calhoun, B. H., Statistical Modeling for the Minimum Standby Supply Voltage of a Full SRAM Array, in European Solid State Circuits Conference (ESSCIRC), 2007, pp. 400-403.
P. Wang, Agarwala, R., Bishop, H. L., Dissanayake, A., and Calhoun, B. H., A 785nW Multimodal (V/I/R) Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring, in 2020 IEEE Symposium on VLSI Circuits (VLSI), 2020.
J. Wang and Calhoun, B. H., Canary Replica Feedback for Near-DRV Standby VDD Scaling in a 90nm SRAM, in Custom Integrated Circuits Conference (CICC), 2007, pp. 29-32.
D. D. Wentzloff, Calhoun, B. H., Min, R., Wang, A., Ickes, N., and Chandrakasan, A. P., Design Considerations for Next Generation Wireless Power-Aware Microsensor Nodes, in International Conference on VLSI Design, 2004, pp. 361-367.
S. N. Wooters, Calhoun, B. H., and Blalock, T. N., An Energy-Efficient Subthreshold Level Converter in 130-nm CMOS, IEEE Transactions on Circuits and Systems II, vol. 57, pp. 290-294, 2010.
S. N. Wooters, Cabe, A. C., Qi, Z., Wang, J., Mann, R. W., Calhoun, B. H., Stan, M. R., and Blalock, T. N., Tracking On-Chip Age Using Distributed, Embedded Sensors, Transactions on VLSI Systems (TVLSI), 2011.
S. N. Wooters, Cabe, A. C., Qi, Z., Wang, J., Mann, R. W., Calhoun, B. H., Stan, M. R., and Blalock, T. N., Tracking On-Chip Age Using Distributed, Embedded Sensors, Transactions on VLSI Systems (TVLSI), vol. 20, p. 12, 2012.

Pages