VLSI Design Group

Navigation

Search This Site

Publications

Export 248 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
A. Shrivastava, Craig, K., Roberts, N., Wentzloff, D. D., and Calhoun, B. H., A 32nW Bandgap Reference Voltage Operational from 0.5V Supply for Ultra-low Power Systems, in EEE International Solid-State Circuits Conference (ISSCC), 2015.
A. Shrivastava, Lach, J., and Calhoun, B., A Charge Pump Based Receiver Circuit for a Voltage Scaled Interconnect, in International Symposium on Low Power Electronics and Design, 2012.
A. Singhee, Wang, J., Calhoun, B. H., and Rutenbar, R. A., Recursive Statistical Blockade: An Enhanced Technique for Rare Event Simulation with Application to SRAM Circuit Design, in International Conference on VLSI Design, India, 2008, pp. 131-136.
P. Sotiriadis, Franza, O., Bailey, D., Calhoun, B., Lin, D., and Chandrakasan, A., Fast Algorithm for Clock Grid Simulation, in European Solid State Circuits Conference (ESSCIRC), 2002, pp. 771-774.
J. B. Stocking, Eberhardt, W. C., Shakhsheer, Y. A., Paulus, J. R., Appleby, M., and Calhoun, B. H., A Capacitance-Based Whisker-like Artificial Sensor for Fluid Motion Sensing, in IEEE Sensors, 2010.
L. Szafaryn, Chen, J., Calhoun, B. H., Lach, J., Skadron, K., and Meyer, B. H., Reducing the Cost of Safety-Critical Systems with On-Demand Redundancy, in SRC Techcon, 2012.
T
D. S. Truesdell and Calhoun, B. H., A 640 pW 22 pJ/sample Gate Leakage-Based Digital CMOS Temperature Sensor with 0.25°C Resolution, in IEEE Custom Integrated Circuits Conference (CICC) 2019, Austin, TX, 2019.PDF icon A 640 pW 22 pJ_sample Gate Leakage-Based Digital CMOS Temperature Sensor with 0.25C Resolution.pdf (1.81 MB)
D. S. Truesdell, Li, S., and Calhoun, B. H., A 0.5V 560-kHz 18.8-fJ/Cycle On-Chip Oscillator with 96.1-ppm/°C Steady-State Stability Using a Duty-Cycled Digital Frequency-Locked Loop, IEEE Journal of Solid-State Circuits, 2021.PDF icon A 0.5-V 560-kHz 18.8-fJ_Cycle On-Chip Oscillator With 96.1ppm_C Steady-State Stability Using a Duty-Cycled Digital Frequency-Locked Loop.pdf (2.95 MB)
D. S. Truesdell and Calhoun, B. H., Improving Dynamic Leakage Suppression Logic with Forward Body Bias in 65nm CMOS, in IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2019.
D. S. Truesdell, Liu, X., Breiholz, J., Gupta, S., Li, S., and Calhoun, B. H., NanoWattch: A Self-Powered 3-nW RISC-V SoC Operable from 160mV Photovoltaic Input with Integrated Temperature Sensing and Adaptive Performance Scaling, in 2022 IEEE Symposium on VLSI Circuits (VLSI), (Equally-Credited Authors), 2022.PDF icon NanoWattch A Self-Powered 3-nW RISC-V SoC Operable from 160mV Photovoltaic Input with Integrated Temperature Sensing and Adaptive Performance Scaling.pdf (11.11 MB)
D. S. Truesdell and Calhoun, B. H., Channel Length Sizing for Power Minimization in Leakage-Dominated Digital Circuits, in IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2018.
D. S. Truesdell, Ahmed, S. Z., Ghosh, A. W., and Calhoun, B. H., Minimum-Energy Digital Computing with Steep Subthreshold Swing Tunnel FETs, IEEE Journal of Exploratory Solid-State Computational Devices and Circuits (JxCDC), 2020.PDF icon Minimum-Energy Digital Computing With Steep Subthreshold Swing Tunnel FETs.pdf (1.02 MB)
D. S. Truesdell, Li, S., and Calhoun, B. H., A 0.5V 560kHz 18.8fJ/Cycle Ultra-Low Energy Oscillator in 65nm CMOS with 96.1ppm/°C Stability Using a Duty-Cycled Digital Frequency-Locked Loop, in 2020 IEEE Symposium on VLSI Circuits (VLSI), 2020.PDF icon A 0.5V 560kHz 18.8fJ_Cycle Ultra-Low Energy Oscillator in 65nm CMOS with 96.1ppm_C Stability Using a Duty-Cycled Frequency-Locked Loop.pdf (2.67 MB)
D. S. Truesdell, Dissanayake, A., and Calhoun, B. H., A 0.6-V 44.6-fJ/Cycle Energy-Optimized Frequency-Locked Loop in 65-nm CMOS With 20.3-ppm/°C Stability, IEEE Solid-State Circuits Letters (SSCL), 2019.PDF icon A 0.6-V 44.6-fJ Cycle Energy-Optimized Frequency-Locked Loop in 65-nm CMOS With 20.3-ppm C Stability.pdf (1.64 MB)
D. S. Truesdell, Breiholz, J., Kamineni, S., Liu, N. X., Magyar, A., and Calhoun, B. H., A 6–140-nW 11 Hz–8.2-kHz DVFS RISC-V Microprocessor Using Scalable Dynamic Leakage-Suppression Logic, IEEE Solid-State Circuits Letters (SSCL), 2019.PDF icon A 6–140-nW 11 Hz–8.2-kHz DVFS RISC-V Microprocessor Using Scalable Dynamic Leakage-Suppression Logic (1.63 MB)
D. S. Truesdell and Calhoun, B. H., A Single-Supply 6-Transistor Voltage Level Converter Design Reaching 8.18-fJ/Transition at 0.3-1.2-V Range or 44-fW Leakage at 0.8-2.5-V Range, IEEE Solid-State Circuits Letters (SSCL), 2020.PDF icon A Single-Supply 6-Transistor Voltage Level Converter Design Reaching 8.18-fJ_Transition at 0.3-1.2-V Range or 44-fW Leakage at 0.8-2.5-V Range.pdf (1.06 MB)
W
L. Wang, Skadron, K., and Calhoun, B. H., Dark vs. Dim Silicon and Near-Threshold Computing, in Dark Silicon Workshop (DaSi), 2012.
J. Wang, Nalam, S., Qi, J., Mann, R. W., Stan, M., and Calhoun, B. H., Improving SRAM Vmin and Yield by Using Variation-Aware BTI Stress, in CICC, San Jose, CA, 2010.
J. Wang, Hoefler, A., and Calhoun, B. H., An Enhanced Canary-based System with BIST for SRAM Standby Power Reduction, Transactions on VLSI Systems (TVLSI), 2011.
J. Wang, Nalam, S., and Calhoun, B. H., Analyzing Static and Dynamic Write Margin for Nanometer SRAMs, in International Symposium on Low Power Electronics and Design, 2008, pp. 129-134.
A. Wang, Calhoun, B. H., Verma, N., Kwong, J., and Chandrakasan, A., Ultra-Dynamic Voltage Scaling for Energy Starved Electronics, in Proc. of GOMAC Tech, 2007.
J. Wang and Calhoun, B. H., An Enhanced Adaptive Canary System for SRAM Standby Power Reduction, in TECHCON, 2008.
A. Wang and Calhoun, A. Chandrakas, Sub-threshold Design for Ultra Low-Power Systems. Springer, 2006.
J. Wang, Singhee, A., Rutenbar, R. A., and Calhoun, B. H., Two Fast Methods for Estimating the Minimum Standby Supply Voltage for Large SRAMs, Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, pp. 1908-1920, 2010.
P. Wang, Agarwala, R., Ownby, N., Liu, X., and Calhoun, B. H., A 2.3-5.7μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO2 , and Pulse Transit Time Co-Monitoring, IEEE Transactions on Biomedical Circuits and Systems, 2024.

Pages