VLSI Design Group

Navigation

Search This Site

Design Automation

LDO Design Automation

The design and verification process for analog circuits can be long and tedious, wherein designers rely heavily on manual effort to create circuits and draw layouts, thereby limiting turn-around-time and design scale and increasing costs. Various previous works have tried to solve this issue by leveraging digital automated place-and-route (APR) tools, but they involve replacing analog elements with digital counterparts, thereby dampening performance. In this work, we propose a digital flow-based approach to design all-analog circuits that dramatically speeds up the design and layout process while retaining the benefits of true analog topologies and demonstrate the performance for three low-dropout regulators (LDOs). Fabricated in 65-nm CMOS, measurement results show that the generated LDOs achieve up to 99.95% peak current efficiency, a figure-of-merit (FOM) of 4.6 ps, and up to 63.93% reduction in input offset variability with respect to their manually designed counterparts.

 

SRAM Design Automation

ViPro for Register Files (RFs) - not only explores methodologies of designing low power and high performance RFs and it also extends a virtual prototyping (ViPro) tool to support fast and efficient estimation of different design knobs on the overall multi-port RF macros. The extension of ViPro fills the blank of the multi-port register files, and provides hierarchical BL scheme as an extra knob for better memory design.

Similar tool likes CACTI developed by HP Laboratories also evaluates delay and energy of memories, but the results are extremely inaccurate due to using a mathematical circuit model. The left figure above illustrates the delay and energy of a gate chain which is a fundamental element of circuits, and results of CACTI using high performance and low power transistors are both substantially different from SPICE simulation results of the commercial technology and the predictive technology model for the same gate chain.

The right figure above shows the Pareto curves of the 8T 1R/1W bitcell with single-ended BL sensing, differential BL sensing, and two hierarchical BL (16bits/LBL & 32bits/LBL) sensing schemes at 8KB capacity. Two hierarchical BL sensing schemes contribute to the combined Pareto curve.

Subscribe to Design Automation