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Abstract—The data retention voltage (DRV) defines the mini-
mum supply voltage for an SRAM cell to hold its state. Intra-die
variation causes a statistical distribution of DRV for individual
cells in a memory array. We present two fast and accurate meth-
ods to estimate the tail of the DRV distribution. The first method
uses a new analytical model based on the relationship between
DRV and static noise margin. The second method extends the
statistical blockade technique to a recursive formulation. It uses
conditional sampling for rapid statistical simulation and fits the
results to a generalized Pareto distribution (GPD) model. Both
the analytical DRV model and the generic GPD model show
a good match with Monte Carlo simulation results and offer
speedups of up to four or five orders of magnitude over Monte
Carlo at the 6σ point. In addition, the two models show a very
close agreement with each other at the tail up to 8σ. For error
within 5% with a confidence of 95%, the analytical DRV model
and the GPD model can predict DRV quantiles out to 8σ and
6.6σ respectively; and for the mean of the estimate, both models
offer within 1% error relative to Monte Carlo at the 4σ point.

Index Terms—Data retention voltage, Monte Carlo, SRAM,
static noise margin, supply voltage scaling, variation.

I. Introduction

STANDBY leakage power can dominate the total power
budget of memories or system-on-a-chips that dedicate

increasingly large percentages of die area to memory. Supply
voltage (VDD) scaling is an effective approach for leakage
power savings during SRAM/Cache standby mode. Besides
the direct effect of smaller voltage on power savings, VDD

scaling reduces both sub-threshold leakage current due to drain
induced barrier lowering and gate leakage current. Lowering
VDD as far as possible maximizes leakage power reduction but
might also lead to data loss. The data retention voltage (DRV)
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is the lower bound of the standby supply voltage that still
preserves data in the SRAM cells.

Device variability has been a big challenge for circuit design
in nanometer technologies. The most problematic variation
is caused by the random inter-device variation sources, like
random doping fluctuation (RDF). RDF induced variation
increases with technology scaling. The randomness of thresh-
old voltage (VT ) due to RDF can be modeled as a normal
distribution with the standard deviation inversely proportional
to the channel area [1]. SRAM cells often use the smallest
geometry to increase memory density, thus becoming particu-
larly susceptible to RDF. Consequently, the DRV of one cell
can be very different from another cell in the same array. Note
that the DRV of an entire array is the DRV of the worst cell in
the array. The random nature of the DRV of cells makes the
array DRV also a random variable. Say, for a 1 Mb array, we
desire that at least 99% of manufactured arrays have a DRV of
0.7-V or lower. This places a very strict yield requirement on
the cell: the probability of the cell DRV exceeding 0.7-V must
be 1.005e-8 (1 part per 100M) or less. For larger array sizes,
this exceedance probability for the cell must be even lower.
These extreme yield requirements on the cell DRV pose a
difficult problem for yield estimation, given a cell design.

A straightforward method for obtaining the array DRV is to
run a full Monte Carlo (MC) simulation until we obtain DRV
values at the required probability levels. However, this is often
prohibitively slow for multi-Mb memories (e.g., months on a
single machine). For instance, to estimate the DRV with the
probability of 1.005e-8, standard MC should run at least 100
million sample points to reach such an extreme probability
level. Even then, the estimate of DRV quantile will be suspect
because of the lack of statistical confidence. However, running
the requisite billions of samples (circuit simulations) is utterly
intractable.

Some recent efforts have tried to address this problem
of estimating extreme probabilities. For example, [2] shows
how importance sampling can be used to predict failure
probabilities. Recently, [3] applied an efficient formulation
of these ideas for modeling rare failure events of single 6T
SRAM cells, based on the concept of mixture importance
sampling from [4]. Reference [5] proposed some heuristics to
enhance the accuracy of this method. However, the method
only estimates the failure probability of a single threshold
value of the performance metric. A re-run is needed to
obtain probability estimates for another failure threshold; no
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complete model of the tail of the distribution is computed.
Knowledge of the tail distribution allows the designer to take
a yield-centric approach: for example, target a specific yield
level, rather than a performance specification, or look at the
sensitivity of yield to the supply voltage to make array-level
design decisions. The YENSS method of [6] abandons MC
and uses a boundary search method to estimate the yield.
Although it provides significant speedup in low dimensions,
the complexity of the search may increase exponentially with
increasing dimensionality.

An alternative is to run a small MC and fit some pre-
determined distribution form (e.g., Gaussian) to the resulting
DRV sample set. This fitted distribution can then be used to
extrapolate far into the tail of the distribution. However, the
DRV follows some non-Gaussian distribution and ad hoc fits
can lead to large errors. In this paper, we present and apply
two rigorous techniques based on this alternative, for efficient
estimation of extreme DRV tail distributions.

1) A statistical model for DRV. Although [7] has proposed a
theoretical model for the DRV of a single cell, a rigorous
model for the DRV distribution has not been proposed yet.
This paper derives a new statistical model for the DRV
distribution from the relation between DRV and static
noise margin (SNM). Since the model is obtained from
the physical behavior of the cell, it remains valid even in
the extreme tail of the DRV distribution and allows us to
estimate the array-wide DRV for arbitrary array size.

2) A generic tail model from recursive statistical blockade.
The statistical blockade (SB) method, proposed in [8],
improved upon standard MC for simulating rare events
by simulating only those samples that are likely to ap-
pear in the tail of the distribution of any performance
metric (e.g., DRV). The simulated tail points are used
to fit a generalized Pareto distribution (GPD) model
to the conditional distribution of events far out in the
tail. However, the original SB method does not directly
support DRV estimation because of the presence of a
conditional in the formulation of the metric. Also, if rare
samples with extremely low probability are required, SB
can still become prohibitively expensive. In this paper,
we extend the SB method to a recursive formulation, that
can also handle conditionals. These extensions allow us
to efficiently build GPD-based models for the tail of the
DRV distribution.

Both methods operate in two steps to achieve accuracy
and efficiency: 1) use a small MC-based simulation to
learn relevant information about the cell design, and
2) estimate a theoretically sound model for the DRV
distribution (or its tail) based on this information. The first
method requires fewer circuit simulations, as it exploits
specific characteristics of DRV, while the second method can
be applied to other metrics. A preliminary version of this
paper was presented in [9] and [10]. We present in this paper
a more rigorous treatment of the recursive statistical blockade
algorithm, and a new, extensive analysis of the statistical
accuracy of both our methods.

The remainder of this paper is organized as follows.
Section II discusses the definition of DRV and basic character-

Fig. 1. 6T SRAM cell and various leakage current paths inside the cell.

Fig. 2. Cell nodes Q and QB (a) converge if the cell is balanced or (b) flip
if the cell is imbalanced when VDD is lower than DRV.

izations. Section III presents the details of our statistical model
for DRV, based on the connection between DRV and SNM.
Section IV presents the extension of SB for estimating DRV
at extremely rare tail points. Section V describes the results
from different methods and further discusses the confidence
in DRV estimation. Finally, we draw conclusion and discuss
future work in Section VI.

II. DRV and its Statistics

Fig. 1 shows the structure of the traditional 6T SRAM
cell as well as the major leakage paths during standby mode,
where the pass-gate transistors (XL and XR) are turned off.
Lowering VDD can exponentially reduce all the leakage com-
ponents, including sub-threshold current (Isub), gate leakage
(Ig), junction leakage (Ij) and the gate induced drain leakage
(GIDL) current (IGIDL). Due to the direct effect of VDD, the
cell leakage power can be further reduced with a lower VDD.
Many designs have exploited VDD scaling for SRAM leakage
power reduction during standby and/or active operation [7],
[11]–[16].

However, collapsing VDD degrades cell stability. Fig. 2
elaborates on the behavior of Q and QB as VDD is lowered.
Fig. 2(a) shows the case when the cell is balanced (symmetric),
with identical left and right halves. With VDD scaling, the
cell nodes Q and QB converge to a metastable point as
a result of degraded gain, making the “0” and “1” states
indistinguishable. Fig. 2(b) shows the case when the cell
is imbalanced by some variation induced mismatch in the
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Fig. 3. Simulated DRV histogram for a 10K-b SRAM in a 90 nm node.

transistors. In this case, Q and QB flip to the more stable
state (“1” here). The DRV defines the minimum VDD that can
be applied to an SRAM cell without losing data. Since a cell
can store either a “0” or a “1,” the actual DRV is computed
as follows:

DRV = max(DRV0, DRV1) (1)

where DRV0 and DRV1 are the DRV when the cell is storing a
“0” and “1” respectively. If the cell is balanced, then DRV0 =
DRV1. However, if there is any mismatch due to process or
lithography variations, they become unequal. Particularly, one
becomes much larger and the other becomes much smaller or
even close to 0. Smaller DRV means the cell is more stable.
This implies that mismatch will make the cell more stable for
one data value while less stable at the other. Therefore, to
obtain the real DRV, we must pick the worse (larger) from
both DRV0 and DRV1.

We run MC simulation with independent normally-
distributed VT variation on each transistor of the 6T cell. Fig. 3
shows the histogram of a 10K-point MC simulation for the
DRV of SRAM cells in a commercial 90 nm CMOS process.
The DRV exhibits a skewed distribution with a heavy tail on
the right side. DRV values in this heavy tail are most relevant
for a fault-free SRAM array, since the worst cell in the array
determines the minimum standby VDD that can be applied to
the array. Accurate estimation of the DRV values in the tail
is essential for optimizing the tradeoff between SRAM yield
and standby power savings. If the tail value is over-estimated,
the cell will be over-designed or over-protected thus limiting
the standby power savings. On the contrary, if it is under-
estimated, more cell failures than predicted will occur, and the
yield cannot be met. However, for large memories, we need
to estimate extremely rare DRV quantiles, and standard MC
simulation is too expensive, computationally. This problem
motivates our work in this paper. In the next two sections, we
present two fast and accurate methods for DRV tail estimation.
The first one takes a designer’s approach by exploiting the
electrical characteristics of the SRAM cell. The second method
takes an algorithmic and mathematical view to solve the
general problem of rare event estimation.

III. DRV Statistical Model Based on SNM

Since DRV is the minimum VDD below which a cell cannot
preserve its data, we can also consider it as the VDD at which

Fig. 4. VTCs of (a) balanced and (b) imbalanced cells with varying VDD;
VM is the trip point of the VTCs.

Fig. 5. Quantiles of SNMH and SNML vs. the theoretical standard normal
quantiles when VDD = 0.6-V.

SNM first equals zero in a noiseless system. Therefore, we
propose to use SNM as a starting point to explore DRV
statistics.

A. Cell Hold Stability and its Sensitivity to VDD

SNM measures the amount of DC voltage noise that a
cell can tolerate and equals the length of the largest square
that can be embedded between the voltage characterization
curves (VTCs) of the two half-cells [17] as shown in Fig. 4.
Particularly, the largest square in the upper-left lobe is the
SNMH, the noise margin for holding “0”; the one in the lower-
right lobe is the SNML, the margin for holding “1”. The actual
SNM is computed as follows:

SNM = min(SNMH, SNML). (2)

Fig. 4 also shows the change of VTCs and the embedded SNM
squares as we decrease VDD using the same example cells as in
Fig. 2. Fig. 4(a) shows that symmetry allows the cell to remain
bistable to lower VDD. It becomes clear that the DRV equals the
supply voltage at which SNM is equal to zero in a noiseless
system. Both SNMH and SNML decrease symmetrically to
zero in the absence of mismatches, implying that DRV0 and
DRV1 are equal. However, the stability of the imbalanced cell
(and its DRV) is determined by its worst-case data pattern.
For example, in Fig. 4(b) this particular imbalanced cell is
less stable when Q = 0. Its SNMH first decreases to zero at a
lower VDD, and its DRV is thus determined by DRV0.
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Intra-die VT variation is the major source of cell imbalance
(i.e., mismatch), thus it has a huge impact on SNM. Fig. 5
plots the SNMH and SNML quantiles from a 5K-point MC
simulation vs. the theoretical standard normal quantiles at VDD

= 0.6-V. The near strict linearity in this quantile-quantile (Q-
Q) plot implies that both SNMH and SNML can be well
approximated by a normal distribution. Therefore, we can
accurately estimate the mean (µ) and standard deviation (σ) of
SNMH or SNML by fitting a normal distribution to data from
a small-scale (e.g., 1.5 K–5 K points) MC simulation. Note
that besides intra-die process variation, higher temperature and
aging effects such as NBTI and HCI degrade SNM and DRV.
In this paper, we focus on the change of SNM and DRV due
to intra-die variation, but the proposed analytical model can
also be extended to address the temperature and aging effects.

To find DRV, we must lower VDD until SNM reaches zero, so
it is necessary to examine the sensitivity of SNM to VDD. We
observe that SNMH or SNML remains normally distributed
at different VDD conditions. Moreover, the sensitivity of µ

and σ of SNMH or SNML to VDD actually exhibits a nice
trend. Fig. 6 plots the simulated SNMH µ and σ from 5-K
MC samples under different VDDs. σ remains almost constant
while µ linearly decreases with VDD scaling. This is reasonable
since the shape of the distribution is mainly determined by
the intrinsic parametric VT variation, which is unchanged with
VDD scaling. Thus, the sensitivities of the SNMH µ and σ to
VDD can be approximated as

∂σ

∂VDD
≈ 0

∂µ

∂VDD
≈ k (3)

where k is the coefficient obtained by fitting a linear curve
to the mean values. To obtain those mean values, we have
to run thousands of MC simulations for each VDD point. We
observe that the curve of the nominal SNMH vs. VDD has
about the same slope as the curve of the µ values vs. VDD.
Thus we can also extract k from the linear fit to the curve of the
nominal results, which only requires a single short DC-sweep
SPICE simulation and thus offers a great speedup. However,
this simplified procedure might lead to some errors. In Section
V-B, we will further discuss how to maintain a good accuracy
when using k extracted from a single DC simulation.

B. SNM and DRV Statistical Model

The real SNM of the cell is the minimum of SNMH and
SNML. As shown in Fig. 5, the distribution of SNMH and
SNML are almost identical because of the symmetry of the
6T cell. If we assume SNMH and SNML are also independent
random variables, then the cumulative density function (CDF)
of SNM at supply voltage v is

FSNMv
(s) = P(SNMv < s)

= P(min(SNMHv, SNMLv) < s)

= P(SNMHv < s) + P(SNMHv ≥ s, SNMLv < s)

= 2FSNMHv
− F 2

SNMHv
(4)

where FSNMHv
is the CDF of SNMH at supply voltage v.

Fig. 6. Mean (µ) and standard deviation (σ) of SNMH against VDD under
mismatch.

A cell hold failure occurs when the cell’s SNM is less than
the desired noise margin s, which is often a positive value. If
more noise immunity is needed (e.g., for protecting against
larger voltage fluctuation), s should be larger. We define
Pf (v, s) as the cell hold failure probability when VDD = v

and the minimum acceptable noise margin is s. Pf (v, s) can
be computed with (4). Since SNMHv is a normal random
variable N (µ, σ2), FSNMHv

can be computed with 1
2 erfc( µ−s√

2σ
)

[18], where erfc(·) is the complementary error function. We
can finally compute Pf (v, s) as (5) by using (3)

Pf (v, s) = P(SNMv < s)

= erfc(x) − 1

4
erfc2(x) (5)

where x =
µ0 + k(v − v0) − s√

2σ0

and µ0 and σ0 are some estimates of the mean and standard
deviation of SNMH at an initial voltage, v0. Equation (5)
allows us to quickly estimate the cell failure probability at
any new VDD without rerunning simulations at the new voltage
condition.

DRV is the minimum operation voltage during standby
mode. More specifically, we denote the random variable DRVs

as the cell DRV for a specific noise margin requirement s.
Thus, the failure of the cell at the supply voltage v can also
be defined as the event when DRVs is larger than v

Pf (v, s) = P(DRVs > v) = 1 − FDRVs
(v). (6)

By equating (5) and (6), we can compute the inverse CDF of
DRVs as follows:

F−1
DRVs

(p) =
1

k

(√
2σ0 · erfc−1

(
2 − 2

√
p
) − µ0 + s

)
+ v0 (7)

where P(DRVs ≤ F−1
DRVs

(p)) = p

and erfc−1(·) is the inverse function of erfc(·). Equation (7)
allows us to directly compute the standby supply voltage
required to maintain a desired cell yield.
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Both (5) and (7) only require four parameters. They are the
initial VDD value (v0), and three fitting coefficients: the mean
and standard deviation of SNMH at v0 (µ0 and σ0) as well as
the sensitivity of SNMH to VDD (k). Now let us summarize
the steps of using our model as follows.

1) Pick a value for v0.
2) Extract µ0 and σ0 from a 1.5K–5K-point MC simulation

of SNMH when VDD = v0.
3) Extract k from a short DC-sweep of the nominal SNMH

vs. VDD.
4) Pick a value for s as a minimum acceptable noise margin.
5) Use (5) to compute the cell hold failure probability

Pf (v, s) when VDD = v.
6) Compute the minimum VDD value (i.e., DRVs) satisfying

the required cell hold failure probability pf from (7) with
p = 1 − pf .

We will discuss the sensitivity of the model to the four
parameters in Section V-B.

IV. Recursive Statistical Blockade and its

Application to DRV

The analytical model derived in the previous section pro-
vides excellent estimates of the DRV. However, as with
most analytical models, it is tightly coupled to the specific
context of DRV estimation. In this section, we examine an
alternative, more general method that modifies the approach
to MC simulation. In particular, we extend the SB method
proposed in [8]. The original method generates a model for
the tail distribution of any performance metric in two steps:
1) simulate only rare tail events by filtering standard MC
samples, and 2) fit a GPD model to the simulated tail values.
The method imposes no a priori limitations on the form of
the statistics for the statistical parameters, device models, or
performance metrics.

Although statistical blockade provides us an effective
method for sampling rare events and modeling their statistics,
there are still some practical issues left unresolved by the
original algorithm in [8]. In this paper, we extend the SB
framework to handle metrics with conditionals [e.g., max(),
min()] that result in disjoint rare event regions, and incorpo-
rate a recursive formulation to produce reliable estimates for
extremely rare events (6σ to 8σ).

A. Background: Statistical Blockade

The authors in [8] recognize that for memory cells, the
statistics of only rare events is relevant. In our case, we are
concerned with the distribution of very high DRV quantiles in
the “tail” of the DRV distribution, and not with the “body” of
the distribution. SB defines a tail threshold (for example, the
99% point) t. Without loss of generality, we define the part of
the distribution greater than this threshold as the tail, and we
are interested in the shape of this tail. Here, we can exploit
an important result from extreme value theory [19] that says,
roughly, that the conditional distribution of the events in the
tail tend toward a GPD as we move further out in the tail

Fig. 7. Tail and body regions in the statistical parameter space. The dashed
line is the exact tail region boundary for tail threshold t. The solid line is
the relaxed boundary modeled by the classifier for a classification threshold
tc < t.

toward ∞. The conditional CDF of any DRV value in the tail
is the CDF given that the DRV is in the tail, written as

FDRVs,t
(z) = P(DRVs − t ≤ z|DRVs > t) (8)

=

{
FDRVs (z+t)−FDRVs (t)

1−FDRVs (t) z >= 0
0 z < 0

(9)

where FDRVs
is the CDF of the DRV. The CDF of the GPD is

Gξ,β(z) =

{
1 −

(
1 − ξ z

β

)1/ξ

ξ �= 0 z ∈ D(ξ, β)

1 − e−z/β ξ = 0 z ≥ 0
(10)

where

D(ξ, β) =

{
[0, ∞) ξ ≤ 0[
0, β/ξ

]
ξ > 0

.

It is defined by two parameters ξ and β. [19] shows that under
certain widely satisfied conditions on FDRVs

lim
t→∞ FDRVs,t

(z) = Gξ,β(z) (11)

for some (ξ, β). Relevant theoretical details of this theorem
can be found in [20] and the references therein.

Using Gξ,β for FDRVs,t
for large t, we can approximate the

inverse CDF of DRVs [as in (7)]

F−1
DRVs

(p) = t + Gξ,β(p)−1

(
p − pt

1 − pt

)
(12)

where pt = FDRVs
(t) is the CDF for DRVs = t. For example, if

we choose t as the 99th percentile, pt = 0.99. Of course, for
a given pt , we would need to estimate t. Statistical blockade
then needs to estimate three parameters t, ξ, and β. This is
done with a filtered MC scheme [8] that we briefly review
here.

The key idea is to identify the region in the parameter
(process variable) space that yields circuit performance values
(e.g., SRAM DRV) greater than t. After identifying this region,
we only simulate those MC samples that lie in the tail region,
ignoring (or blocking) the other samples. This characterization
step significantly reduces the number of simulations required
for identifying rare events. For example, if t is the 99th
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Fig. 8. Illustration of disjoint tail regions resulting from conditionals. (a) Behavior of DRV0 and DRV1 along the direction of maximum variation in DRV0.
The worst 3% DRV values are plotted as (red) squares, clearly showing the disjoint tail regions (along this direction in the parameter space). (b) Circuit
metric (e.g., DRV) with two disjoint tail regions. The tail regions are separated from the body region by dashed lines; w1,DRV0 is the direction of maximum
variation of the circuit metric.

percentile, we must simulate only 1% of the MC samples,
resulting in an immediate speedup of 100× over standard MC.

To build this model of the boundary of the tail region, we
use a small MC sample set (1000 points) to train a classifier.
However, it is difficult, if not impossible, to build an exact
model of the tail region boundary. [8] suggests relaxing this
requirement to allow for classification error by building the
classification boundary at a classification threshold tc that
is less than the tail threshold t. Fig. 7 shows this relaxed
classification boundary in the 2-input parameter space. The
dashed line is the exact boundary of the tail region for the
tail threshold t, and the solid line is the relaxed classification
boundary for the classification threshold tc. Reference [21]
suggests using tc as the 97th percentile, based on empirical
analysis of the tradeoff between classifier accuracy, simulation
time, and tail model fit. SB filtering and GPD model building
is then accomplished as follows.

1) Perform initial sampling to generate data to build a
classifier. This initial sampling can be standard MC or
importance sampling. Also estimate t and tc < t from
this data.

2) Build a classifier using the classification threshold tc.
3) Generate more samples using MC, following the CDF F ,

but simulate only those that are classified as tail points.
Update the estimate of t.

4) Fit GPD model to the simulated tail points.

There are several methods for fitting the GPD model to data
(step 4) (see [8]). Here we will use the maximum likelihood
estimate (MLE).

We will now describe the practical insufficiencies of SB for
our DRV statistics problem, and our proposed solutions.

B. Conditionals and Disjoint Tail Regions

1) Problem: SRAM performance metrics are often com-
puted for two states of the SRAM cell: storing a 1, and storing

a 0. The final metric value is then a maximum or a minimum
of the vales for these two states. The presence of such
conditionals (max, min) can result in disjoint tail regions in the
statistical parameter space, making it difficult to use a single
classifier to define the boundary of the tail region. This creates
a situation where the standard SB classification technique
would fail because of the presence of disjoint tail regions.
SRAM DRV is a typical example of the maximum problem
since DRV is the maximum of DRV0 and DRV1. Suppose we
run a 1000-point MC, varying all the mismatch parameters
in the SRAM cell according to their statistical distributions.
This would give us distributions of values for DRV0, DRV1,
and DRV. In certain parts of the mismatch parameter space
DRV0 > DRV1, and in other parts, DRV0 < DRV1. This
is clearly illustrated by Fig. 8(a): let us see how. Using the
SiLVR method proposed in [22], we extract the direction in
the parameter space that has maximum impact on DRV0. This
direction is essentially the projection vector w1,DRV0 for the
first latent variable of DRV0. The figure plots the simulated
DRV0 and DRV1 values from the 1000-point MC run, along
this direction; i.e., against the first latent variable d1,DRV0 . It
is clear that the two DRV measures are inversely related: one
decreases as the other increases.

Now, let us take the maximum as in (1), and choose the
classification threshold tc equal to the 97th percentile. Then
we pick out the worst 3% points from the classifier training
data and plot them against the same latent variable in Fig. 8(a),
as squares. Note that we have not trained the classifier yet, we
are just looking at the points that the classifier would have to
classify as being in the tail. We can clearly see that these points
(the red squares) lie in two disjoint parts of the parameter
space. Since the true tail region defined by the tail threshold
t > tc will be a subset of the classifier tail region (defined
by tc), the true tail region consists of two disjoint regions of
the parameter space. This is illustrated with a 2-D example in
Fig. 8(b). The figure also shows the maximum impact direction
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vector, similar to the projection vector w1,DRV0 extracted by
SiLVR. Although this vector is different from w1,DRV0 , which
lies in the higher dimensional space of per-device statistical
parameters (e.g., the VT skews of the six SRAM devices), we
mark it as w1,DRV0 to make the relation obvious. The dark
tail regions on the top-right and bottom-left corners of the
parameter space correspond to the large DRV values shown
as squares in Fig. 8(a).

In the general case for arbitrary number of arguments in the
conditional, we can write the circuit metric as

y = max(y0, y1, . . . ). (13)

Such conditionals are very common for SRAM cell metrics,
and hence, a classification strategy for such cases is essential
for practical use of statistical blockade. If we know beforehand
that the disjoint regions are symmetric, we can just scale up
the probability mass of the tail by a factor equaling the number
of arguments in (13). For example, in the case of DRV, if we
run standard SB on DRV0 (or DRV1) with pt = 0.99, we can
use (12), but with pt replaced by (1 − 2(1 − pt)) = (2pt − 1).
However, in the general case there may be asymmetries as in
the case of an 8T SRAM cell [23]. Hence, we now propose a
strategy for the general case, that is independent of the circuit
characteristics.

2) Solution: Instead of building a single classifier for the
tail of (1), let us build two separate classifiers, one for the
97th percentile (tc,DRV0 ) of DRV0, and another for the 97th
percentile (tc,DRV1 ) of DRV1. The generated MC samples
can then be filtered through both of these classifiers: points
classified as “body” by both the classifiers will be blocked,
and the rest will be simulated. The resulting general algorithm
is then as follows.

1) Perform initial sampling to generate training data to build
the classifiers, and estimate tail and classification thresh-
olds, ti and tc,i, respectively, for each yi, i = 0, 1, . . . .
Estimate the tail threshold t for y.

2) For each argument, yi, i = 0, 1, . . . , of (13), build a
classifier Ci at a classification threshold tc,i that is < ti,
the corresponding tail threshold.

3) Generate more points using MC, but block the points
classified as “body” by all the classifiers. Simulate the
rest and compute y for the simulated points. Update the
estimate of t.

4) Fit the GPD model to the points with y > t.

Hence, in the case of Fig. 8(b), we build a separate classifier
for each of the two boundaries. The resulting classification
boundaries are shown as solid lines. Note that this same
algorithm applies to the case of multiple circuit metrics. Each
metric would have its own thresholds and its own classifier,
just like each argument in (13), the only difference being that
we would not be computing any conditional.

C. Recursive Formulation of Statistical Blockade

1) Problem: Suppose we wish to support our GPD model
with data up to the 6σ point to increase statistical confidence
in predictions far into the tail. The failure probability of a 6σ

Algorithm 1 The recursive statistical blockade algorithm with
fixed sequences for the tail and classification thresholds: t =
99%−, 99.99%−, 99.9999%−, . . . points and tc = 97%−, 99.97%−,
99.9997%, . . . points. The total sample size is given by (14).

Require: initial sample size n0 (e.g., 1000); total sample size n;
performance metric function y = max(y0, y1, . . . )

1: X = MonteCarlo(n0)
2: n′ = n0

3: Y = fsim(X) // Simulate initial MC sample
4: ytail,i = Y·,i, i = 0, 1, . . . // The ith column contains values for yi

in y = max(y0, y1, . . . )
5: Xtail,i = X, i = 0, 1, . . .
6: while n′ < n do
7: �n = 99n′ // Number of points to filter in this recursion step
8: n′ = n′ + �n // Total number of points filtered at the end of

this recursion step
9: X = MonteCarloNext(�n) // The next �n points in the MC

sequence
10: for all i : yi is an argument in y = max(y0, y1, . . . ) do
11: (Xtail,i, ytail,i) = GetWorst(1000, Xtail,i, ytail,i) // get the 1000

worst points
12: t = Percentile(ytail,i, 99)
13: tc = Percentile(ytail,i, 97)
14: Ci = BuildClassifier(Xtail,i, ytail,i, tc)
15: (Xtail,i, ytail,i) = GetGreaterThan(t, Xtail,i, ytail,i) // get the

points with yi > t
16: Xcand,i = Filter(Ci, X) // Candidate tail points for yi

17: end for
18: X = [XT

cand,0 XT
cand,1 . . . ]T // union of all candidate tail points

19: Y = fsim(X) // Simulate all candidate tail points
20: ycand,i = {Yj,i : Xj,· ∈ Xcand,i}, i = 0, 1, . . . // Extract the tail

points for yi

21: ytail,i = [yT
tail,i yT

cand,i]
T , Xtail,i = [XT

tail,i XT
cand,i]

T , i = 0, 1, . . . //
All tail points till now

22: end while
23: ytail = MaxOverRows([ytail,0 ytail,1 . . . ]) // compute the condi-

tional
24: ytail = GetWorst(nt , ytail)
25: (ξ, β) = FitGPD(ytail − min(ytail))

value is roughly 1 part per billion, corresponding to a 99% chip
yield requirement for a 10 Mb cache (with no error protection).
This is a reasonable requirement for large memories. However,
for a 99% tail threshold, even a perfect classifier (tc = t) will
only reduce the number of simulations to an extremely large 10
million. If we decide to use a 99.9999% threshold, the number
of simulations will be reduced to a more practical 1000 tail
points (with a perfect classifier). However, we will need to
simulate an extremely large number of points (≥1 million) to
generate a classifier training set with at least one point in the
tail region. In both cases, the circuit simulation counts are too
high. We now describe a recursive formulation of statistical
blockade that reduces this count drastically.

2) Solution: Let us first assume that there are no con-
ditionals. For a tail threshold equal to the ath percentile,
let us represent it as ta, and the corresponding classification
threshold as tac . For this threshold, build a classifier Ca and
generate sufficient points beyond the tail threshold, y > ta,
so that a higher percentile (tb, tbc , b > a) can be estimated.
The confidence interval-based stopping criterion suggested in
[21] can be used to determine the number of points that is
sufficient. In this paper, we have used a fixed number of 1000.
For the new, higher threshold tbc , a new classifier Cb is trained
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Fig. 9. Recursive formulation of statistical blockade as in Algorithm 1.

and a new set of tail points (y > tb) is generated. This new
classifier will block many more points than Ca, significantly
reducing the number of simulations. Repeating this procedure
pushes the threshold out more until the tail region of interest
is reached.

Algorithm 1 shows the complete pseudo-code for this re-
cursive formulation of statistical blockade, applied to general
conditionals (13). This pseudo-code uses a conditional tail
threshold of the 99th percentile at each recursion stage:
(ta, tac ) = (99%, 97%) points, (tb, tbc ) = (99.99%, 99.97%)
points, and so on. Consequently, the total sample size (with-
out filtering) n is restricted to some power of 100, times
1000

n = 100j · 1000 j = 0, 1, . . . (14)

These threshold values are an extension of the values chosen in
the original SB paper [8], where the authors relied on empirical
evidence. A general version of the algorithm for arbitrary
thresholds is presented in [20]. Practical implementation of
this general algorithm is, however, difficult and is a topic for
further research.

The pseudo-code is largely self-explanatory, but we detail
a few of the variables and function calls for clarity. fsim

returns multiple outputs: it computes the values of all the
arguments of the conditional in y = max(y0, y1, . . . ). For
example, in the case of DRV, it will return the values of
DRV0 and DRV1 after running the requisite circuit simulation.
These values, for any one MC point, are stored in one row of
the result matrix Y. The function MonteCarloNext(�n)
returns the next �n points in the sequence of points generated
until now. The function GetWorst(n, X, y) returns the
n worst values in the vector y and the corresponding rows of
the matrix X. This functionality naturally extends to the two
arguments GetWorst(n, y). GetGreaterThan(t, X,
y) returns the elements of y that are greater than t, along with
the corresponding rows of X.

The algorithm presented here is in iterative form, rather than
recursive form. To see how the recursion works, suppose we
want to estimate the 99.9999% tail. To generate points at and
beyond this threshold, we first estimate the 99.99% point and
use a classifier at the 99.97% point to generate these points
efficiently. To build this classifier in turn, we first estimate
the 99% point and use a classifier at the 97% point. Fig. 9
illustrates this recursion on the PDF of any one argument in
(13).

V. Results

A. DRV Estimate Comparisons

We now test our DRV analytical model described in
Section III and the recursive statistical blockade method de-
scribed in Section IV on the DRV test case with an SRAM
cell in a commercial 90 nm process. Without loss of generality,
we choose zero noise margin (i.e., s = 0) as the cell failure
criterion.

Fig. 10 plots the DRV quantiles against the quantiles of
a standard normal distribution. That is, if the qth quantile
of the standard normal distribution is equal to m (i.e., m-
σ point for a standard normal) and the qth quantile of the
DRV distribution is equal to y, we plot the point at (m, y)
coordinates of the figure. Since SRAM arrays usually have at
least 1000 cells, we are only interested in the quantiles larger
than 99.9th percentile, which is ∼3σ point of the standard
normal distribution. Fig. 10 uses different methods to estimate
the DRV quantiles for m ∈ [3, 8].

1) Analytical DRV model: use (7) with p equal to the
probability of the normal quantile at m (i.e., p =
0.5erfc(−m/

√
2)). We extracted k = 0.425 from a DC

sweep simulation for SNMH. We selected 100 mV as
v0 and obtained the parameters µ0 = 11.0 mV and σ0

= 9.3 mV from a 5K-point MC simulation.
2) Standard MC or fast MC with recursive statistical

blockade: use standard MC for estimations below 4σ.
Estimates greater than 4σ were obtained by the re-
cursive blockade method, thus allowing dramatically
reduced simulation time. Note that here we are not
using the GPD model, but only the empirical esti-
mate from the sampled values. Algorithm 1 is run for
n = 1 billion. This results in three recursion stages,
corresponding to total sample sizes of n′ = 100 000,
10 million, and 1 billion MC points, respectively. The
worst DRV values for these three recursion stages are
estimates of the 4.26σ, 5.2σ, and 6σ points, respectively.

3) GPD model from recursive statistical blockade: the 1000
tail points from the last recursion stage of the recursive
statistical blockade run are used to fit a GPD model,
which is then used to predict the DRV quantiles.

4) Gamma function: we also fit one set of 5000 DRV
samples to a variety of commonly used one-sided distri-
butions (e.g., lognormal, exponential, Weibull, Rayleigh,
and gamma) as well as the normal distribution. They
either overestimate or underestimate the DRV values in
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Fig. 10. Estimates of DRV quantiles in a commercial 90 nm process from
different methods. The GPD model closely fits the analytical model (7). The
(red) circles with m ≤ 4 are obtained from standard MC simulation and the
three circles with m > 4 show the worst DRV values from the three recursion
stages of statistical blockade sampling. Although the gamma function shows
the best fit among a variety of commonly used one-sided distributions for this
data set, it overestimates DRV for m > 6.

the tail region. Among them, the gamma distribution
shows the best fit for this set of data.

From Fig. 10, we can immediately see that the results from
both the analytical DRV model and the GPD model closely
track the MC results up to 6σ. In addition, the two proposed
models match each other even up to 8σ. This matching of
independently derived models increases the confidence of
their accuracy. Note here that, since our final GPD model
uses t as the 99.9999th percentile point (∼ 4.75σ point),
the model does not have a real probabilistic meaning below
m = 4.75. However, it can still be employed as a purely shape
fitting function, as long as we are far from the mode in the
distribution of DRV.

In addition to the two proposed methods, the approach
of directly fitting a known distribution is used to estimate
DRV quantiles. Since the DRV is a non-negative skewed
distribution, a variety of known one-sided distributions (e.g.,
lognormal, Weibull, and gamma) as well as the normal distri-
bution are fitted to the DRV data. For the data set plotted in
Fig. 10, the gamma distribution shows the best fit. However,
its extrapolation in the tail beyond 6σ overestimates relative to
the two proposed models. A major issue with this distribution
fitting approach is that the fit may suffer from overfitting,
since the distribution pick is purely data based, with not much
use of the problem structure. Therefore, even if the gamma
distribution fits well for one set of data, the extrapolation
in the tail may be very incorrect for a different circuit, or
even another data set in the same circuit. Fig. 11 shows an
example when we test the DRV for a 6T cell in a commercial
45 nm process. The best fitting distribution (gamma) for the
90 nm test case is no longer appropriate for the 45 nm test
case. In contrast, our two proposed models both attempt to
maximally capture the problem characteristics, albeit in two
different ways, i.e., one based on circuit characteristics (SNM)
and the other on the tail statistics. As seen in Fig. 11, they
maintain high accuracy relative to MC and excellent agreement
with each other in the 45 nm process. Since we have explicitly

Fig. 11. In a 45 nm process, the gamma fit becomes inaccurate, while the
proposed analytical model and the GPD model closely match MC results and
maintain excellent agreement.

used the mathematical properties of the DRV tail statistics
[(4)–(6) and (8)–(10)] in both our proposed models, they
are much more accurate for estimating the tail values than
any other one-sided reliability distribution empirically picked
from a large class of distributions. In fact, the proposed GPD
model is also a reliability distribution, but it is applied to the
conditional tail distribution and not to the DRV distribution
itself. In specific, it encodes the Pareto, type-II Pareto, and
the exponential distributions.

With high accuracy, both of our proposed methods offer
significant speedup over the standard MC method. The ana-
lytical DRV model only needs a few thousand MC simulations
to extract µ and σ of the SNMH distribution, and then can be
used to predict any extreme DRV tail value. It can thus provide
a speedup of 105× over MC for a 6σ point, which requires
at least 1 billion simulations. For our recursive formulation
of statistical blockade, Table I shows the number of circuit
simulations performed at each recursion stage for a 6σ point
prediction. The total number of simulations is 41 721. This is
drastically smaller than standard MC and basic, non-recursive
statistical blockade (approximately, 30 million with tc = 97th
percentile). 41 721 simulations for DRV computation of a 6T
SRAM cell can be completed in several hours on a single
computer. With the advent of multi-core processors, the total
simulation time can be drastically reduced further with proper
implementation. Note that in cases where the disjoint tail
regions are symmetrical (as in the case of the DRV), we need
to simulate only one of the arguments in (13). This would
reduce the simulation count in each recursion stage (after the
initial stage), by a factor equal to the number of arguments. In
this case of DRV, we need to simulate only DRV0 (or DRV1),
and using the numbers in Table I, the simulation count will
be further reduced, to approximately 21 361.

B. Confidence in the Estimates

Intuitively, the statistical confidence of our estimates de-
creases as we predict farther out in the tail. In other words, the
variance of the predictions will probably increase as we move
out in the tail. Next, we will assess the confidence interval of
the DRV estimation from the analytical DRV model, the GPD
model as well as the MC method.
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TABLE I

Number of Circuit Simulation Needed by Recursive Statistical

Blockade to Generate a 6σ Point

Recursion Stage Number of Simulations
Initial 1000

1 11 032
2 14 184
3 15 505

Total 41 721
Speedup over MC 23 969×

Speedup over statistical blockade 719×

Suppose we have n estimates yi(m), i = 1, . . . , n for the
mσ point, say by building the statistical DRV model from
n different MC runs of SNM. From these estimates we can
empirically compute the 97.5% percentile and 2.5% percentile
points, y97.5%(m) and y2.5%(m), respectively. A 95% confidence
interval κ95%(m) can then be estimated [24] as

κ95%(m) = y97.5%(m) − y2.5%(m). (15)

The 95% confidence interval can also be expressed as [ŷ −
αŷ, ŷ + αŷ], where α is the radius of 95% confidence interval
as a percentage of the mean of the estimates. Smaller α implies
lower variance in the DRV estimate. For a mσ point, we then
compute α as

α(m) =
κ95%(m)

2
n

∑n
i=1 yi(m)

. (16)

We use this empirical method to compute 95% confidence
intervals for the estimate of the mσ point of the SRAM cell
DRV, where m ∈ [3, 8]. Fig. 12(a) shows the radius of the 95%
confidence interval for the analytical DRV model, the GPD
model, and the MC method (using 1 million sample points).
Next, we will describe how we obtain the results for each
approach.

1) Confidence Interval of the Analytical Model: The
analytical model in (7) only requires four parameters
k, v0, µ0, and σ0. The variance of the estimation is determined
by the sensitivity of the model to these parameters. Since
µ0 and σ0 are fitting coefficients from a small-scale MC
simulation of SNMH when VDD = v0, we first assess the
variance of the DRV estimates from the variance of these two
parameters.

We can empirically estimate the confidence or variance
of this model as follows. We first fix v0 and k, and run n

runs of MC simulations with nMC samples each. That will
give us n different pairs of µ0 and σ0. Then we use (7) to
compute n estimates of DRV at the m point, and use (15) and
(16) to compute the tightness of the 95% confidence interval,
α(m), under this pair of (v0,k). We choose v0=100 mV and run
50 MC iterations using 1000 samples for each. k is approxi-
mated to 0.425 by fitting the linear curve to the data from the
DC simulation of the nominal SNMH vs. VDD. The dashed
curve in Fig. 12(a) shows the computed α(m) values, which
are all below 4% for m ∈ [3, 8].

We then use this method to compute α(m) for different pairs
of (v0,k) to check the sensitivity of the variance to v0 and

Fig. 12. Radius of 95% confidence intervals as a percentage of the mean
value for DRV estimation (a) for the analytical model, the GPD model and
the MC method, and (b) using the analytical model with different pairs of v0
and k.

k. We alter v0 from 100 mV to 200 mV and 300 mV. For k,
besides the value 0.425 from the nominal SNMH vs. VDD,
we evaluate another value, 0.4438, which is obtained from the
linear fit to the estimated mean of SNMH from those MC
samples at the three v0 points. As we mentioned in Section
III-A, it is much faster to obtain k from the nominal SNMH
by just running a single short DC sweep simulation. However,
it is necessary to examine whether this faster method can also
offer the comparable accuracy. Here, we first compare the two
k values in terms of the variance of the estimate. In Section
V-B3, we will also show the accuracy of the mean of the
estimate with these two k values. Fig. 12(b) plots the radius
of the 95% confidence interval for each pair of (v0,k). For all
the curves, although the statistical error (α) slightly increases
with m, it remains within 4% (i.e., above 96% accuracy for
95% confidence interval) up to the 8σ point. This indicates
that the variance of the DRV estimates from our model is not
sensitive to either parameter.

2) Confidence Interval of the GPD Model: The variance
of the prediction from the GPD model depends on statistical
error in estimating three parameters t, ξ, and β. Let us look
at t first. t is an estimate of the ptth quantile, estimated using
a total sample size of n (e.g., 1 billion) points.
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Suppose that xi, i = 1, 2, . . . , n, are the sample order
statistics (e.g., DRV values); i.e., the sampled values sorted in
ascending order. Then, any xi is also an estimate of the i/nth
quantile. But, there is a non-trivial probability that some other
order statistic xj, j �= i, may match the actual i/nth quantile.
Now suppose that pt is such that npt is an integer. Then, the
probability that the ith order statistic, xi, equals the pt quantile
is given by a binomial distribution [24], which for large n can
be well approximated by the normal distribution

P(xi = ptth quantile) ∼ N(npt, npt(1 − pt)). (17)

A ±2σ 95.45% confidence interval in terms of the quantile
estimate index i is then given by

[l, h] =
[
�npt − 2

√
npt(1 − pt)�, npt + 2

√
npt(1 − pt)�

]
.

(18)

For the large values of n relevant to us, this range of indices
constitutes an extremely small fraction of n. For our DRV
example of n = 1 billion, this fraction is ∼±63 × 10−9.
This fraction is also the probability measure for this set of
indices. The corresponding confidence interval for the quantile
estimates is [xl, xh], where (l, h) are defined by (18). This
range of x has the same small probability measure, and is
also expected to be very small. For our case, the width of this
confidence interval of t (the estimated 99.9999th percentile)
is a negligible 0.009% of t. In other words, the statistical
error in the estimate of t is negligibly small (±0.0046%).
Consequently, we ignore it in comparison to the statistical error
in the GPD parameter estimates (ξ̂, β̂).

As the number of points used to fit the GPD parameter tends
to ∞, the MLE parameter estimates (ξ̂, β̂) tend to a normal
distribution with covariance matrix �ξ,β, given by [25]

�ξ,β =
1 − ξ

n

[
1 − ξ β

β 2β2

]
ξ <

1

2
. (19)

Substituting the estimated (ξ̂, β̂), gives us an estimate of this
covariance matrix. For our test case, we get

�ξ̂,β̂ =

[
0.0366 0.0042
0.0042 0.0010

]
(20)

i.e., standard deviations of (ξ̂, β̂) are (0.1912, 0.0309).
Now, we sample 10 000 pairs of GPD parameters from

the joint normal distribution with this mean vector and its
covariance matrix to compute different estimates of DRV. With
these DRV estimates, we compute the confidence interval-
based accuracy measure, α, using (15) and (16). The dash-
dotted curve in Fig. 12(a) shows the result of applying this
method. It suggests that for error within 5% with a confidence
of 95% we can predict out to 6.6σ (1 in 48.6 billion).

3) Comparison with Standard MC: Finally, we compare
the confidence intervals of the estimates from our two methods
with the confidence intervals of standard MC estimates. The
confidence interval of the mσ from an n-point MC run is
given by [xl, xh], where l and h are given by (18), but now

Fig. 13. Error of the mean of the DRV estimates from the analytical model
and the GPD model relative to a 1-million-point MC. For the analytical model,
results from different pairs of (v0, k) indicate that a higher accuracy can be
achieved by choosing v0 near the DRV of an ideal cell, which is ∼100 mV
for this 90 nm test case.

we replace pt with the CDF associated with m: 	(m). Once
again, xl and xh are the lth and hth order statistics from the
n-point sample. We now estimate confidence intervals for our
1 million point MC run. The result is plotted as the solid
curve in Fig. 12(a). The width of the confidence interval
from MC increases as we estimate further out to the larger
m points. Note that with 1 million MC samples, we can only
obtain the confidence interval up to ∼4.5σ because there is
no available DRV estimate beyond that.

We further compare the mean of the DRV estimation from
the two models with MC. Fig. 13 shows the error relative
to the result of MC when m ∈ [3, 4.25]. Although we use
the term error, it should be noted that the MC estimate itself
has some statistical error [Fig. 12(a)]. For m ≤ 4, the GPD
model offers less than 1% error. A slightly larger error occurs
when m = 4.25, where the MC result is itself less confident
as shown in Fig. 12(a). In Fig. 13, we also plot the error of
the analytical model for different pairs of (v0,k). Estimation
with v0 = 100 mV shows the best agreement with MC and
the GPD model (∼1% of error for m ≤ 4). It should be noted
that the nominal DRV is less than 100 mV for the 90 nm node
we used. With v0 = 100 mV, we can obtain more samples with
negative SNMH or SNML values so that the approximated µ0

and σ0 can be closer to the true statistics of SNMH or SNHL,
which are the key ingredients of the analytical DRV model.
The results also show that when we use the k value 0.425 that
is obtained from a single DC simulation of the nominal SNMH
vs. VDD, the accuracy of the DRV model is more sensitive to
v0. In this case, estimation with v0 > 100 mV shows relatively
larger errors. However, if we choose k as 0.4438, the value
from the linear fit to the curve of the mean of SNMH vs. VDD,
the sensitivity of the error to v0 is reduced. This is because the
effect of different µ0 at different v0 is eliminated and the shift
of the estimate is only limited by the relative small difference
of σ0 at distinct v0 points. Therefore, we suggest that a value of
v0 close to, but larger than the DRV of an ideal cell is a better
choice for a higher accuracy, especially when using k from the
quick DC simulation of the nominal case for a faster estimate.
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VI. Conclusion and Future Work

Local variation, or mismatch, causes a spread of DRV for
cells in the same SRAM array. The worst-case tail of the
DRV distribution becomes the critical metric and sets the
minimum standby supply voltage for the whole memory. We
proposed two fast and accurate methods to estimate DRV
at the rare tails. Based on the relationship between DRV
and SNM, we proposed an analytical model to estimate the
DRV value. We also proposed an enhanced statistical blockade
method to estimate DRV tail. We overcome two shortcomings
in the original SB technique. First, we extended SB to metrics
like DRV that include conditionals. Then we presented a
recursive way to improve the efficiency and accuracy of SB
for extremely rare events.

The results from both the analytical DRV model and the
GPD model based on data from SB match well with the
result from MC simulation and show a close agreement with
each other at the tail out to 8σ. Both of the methods offer
huge speedups over MC. For one estimate of a 6σ point,
the analytical model gives speedups of up to five orders of
magnitude and the recursive SB tool offers up to four orders
of magnitude. We also assessed the 95% confidence interval
for the two models as well as the MC method. To keep the
estimations within 95% accuracy of 95% confidence interval,
we can use the analytical model to predict DRV quantiles out
to the 8σ point and use the GPD model to predict out to 6.6σ

with ≤50 000 samples. While for standard MC, even 1 000 000
samples can only allow the prediction of the DRV quantiles
out to the ∼4.5σ point. For the mean DRV estimation at 4σ,
both methods show error within 1% relative to MC.

Due to the different nature of different methods, they are
more advantageous in different cases. For small or medium
scale memories with tail points <6σ, we can use either the
analytical DRV model or the GPD model based on recursive
SB, because both are fast and accurate with high confidence.
However, for large memories, we suggest using the analytical
DRV model in the early stages of SRAM cell design because
it provides smaller variance as well as larger speedup in ex-
tremely rare tail region (>6σ). When further design refinement
is needed, we can accelerate MC simulations with the recursive
SB approach to obtain the real MC samples at the tail point
and get the most accurate estimation.

Recently, some novel cells have been proposed to offer bet-
ter performance over the 6T cell in deeply scaled technologies.
An example is the 8T cell [23] which has gained in popularity
because it effectively eliminates cell disturbs during a read
access. For those new types of cells, the analytical DRV model
can be directly applied to any symmetrical ones. In the case of
asymmetrical cells like the 8T cell, the only difference is that
the statistics of SNMH and SNML might be different. Thus we
need two new parameters, µ and σ of SNML. We can easily
obtain them with the same method for SNMH and extend the
DRV model to include them. Since it is a generic method, the
recursive SB method can be directly used for the DRV of any
types of cells and even for metrics other than DRV.

In addition to supporting asymmetrical cells, the analytical
model can be extended in several directions. First, we can
extend the model to estimating the minimum supply voltage

(Vmin) for read and write operation, which is more critical
for active power reduction. Because the read and write SNM
also behave regularly with VDD scaling, we can use a similar
method to derive a Vmin model for read and write. Second,
quick and accurate DRV prediction at different temperature
and aging conditions is desired. A straightforward way is
to run SNM simulations at different conditions and directly
use our current model to estimate DRV with the new model
parameters (µ, σ, and k) that reflect changes induced by those
effects. Besides the results at room temperature described in
Section V, we tested our model at two extreme temperatures,
−50 °C and 100 °C. The model shows errors of less than 2.1%
relative to the standard MC for DRV estimates within 4σ at
those two extreme temperatures. To save more simulation time,
we can further extend the model to predict the impact of tem-
perature and aging on DRV. From our preliminary simulation,
we observed that the change of SNMH mean is approximately
linear with temperature or NBTI induced VT shift at a given
VDD point. The standard deviation of SNMH might also change
with those effects. Moreover, the sensitivity of SNMH to
those effects might alter when VDD is lowered. To derive
an accurate DRV model incorporating temperature and aging
effects, thorough and comprehensive investigations of the
sensitivity of SNMH to those effects across the voltage range
are needed. Finally, the DRV estimation from the two proposed
methods should be verified with silicon measurements and be
evaluated in smaller technologies. Fig. 11 has demonstrated
that both models closely match with MC and maintain excel-
lent agreement with each other in a commercial 45 nm process.
We expect that they can maintain high accuracy and significant
speedup beyond 45 nm because both can learn process and
design related information from a small MC simulation.
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