Analyzing and Modeling Process Balance for Sub-Threshold Circuit Design

Joseph F. Ryan, Jiajing Wang, and Benton H. Calhoun

The University of Virginia
Department of Electrical Engineering
Process Balance: Outline

- About Process Balance
- Implications and Examples
- Modeling
- Conclusions
Sub-threshold Operation

- $V_{DD} < V_T$
- Sub-threshold current for I_{on} and I_{off}
- Well-suited for minimum energy or ultra-low power applications
Process Balance: What Is It?

Process Balance is not variation

It sets the reference point for variation

Global Variation (Die-to-Die)

Local Variation (Transistor-to-Transistor)

Process Balance affects the reference point for all variations. (e.g. the Typical NMOS, Typical PMOS (TT) process corner)
Process Balance: A Balanced Process

- Process Balance affects the Typical-Typical Point.
- Processes in strong inversion are all similar: NMOS ~2-3X stronger than PMOS
- Sub-threshold process balance can vary significantly from process to process
- Balanced Process most robust for sub-threshold (well-known)
Process Balance: Formal Definition

- We define Process Balance as the ratio between the PMOS and NMOS currents in the sub-threshold region.
- Process Balance Factor (PBF) = \(I_P / I_N \)
- Ideally, this ratio should be equal to 1 for a “balanced” process.
Example Balanced Process

- \[\ln(PBF) = \ln(I_P) - \ln(I_N) \]
- \[\ln(PBF) = \ln(I_{P-OFF}) - \ln(I_{N-OFF}) \]

PBF=1 (Balanced Process)
Process Balance: Imbalanced Processes

- Process Balance affects the Typical-Typical Point.
- Global variations have different impact for different process balance.
Process Balance: Imbalanced Processes

- Process Balance affects the Typical-Typical Point.
- Global variations have different impact for different process balance.
- **Worst Case Corner**
- Different processes show different trends!
- Processes Balance has little correlation to the feature-size / vendor!

![Diagram showing log(PMOS on-current) vs log(NMOS on-current) with different process balance scenarios.](image-url)
Process Balance Factor: Example

- Fictitious processes are generated from the PTM (Predictive Technology Model) library by changing V_T for the PMOS and NMOS transistors.
- These examples correspond closely with real commercial processes.
Process Imbalance: Where does it come from?

- In strong-inversion, mobility difference sets N/P current ratio to be approximately two.
- In sub-threshold, other effects dominate: Threshold voltage \((V_T)\), sub-threshold slope, DIBL, etc. (terms in the exponent)
- \(V_T\) is the most important factor that affects process balance at sub-threshold voltages!!
Process Imbalance: Where does it come from?

- Drain-Induced Barrier Lowering (DIBL) can cause the PBF to change with VDD
Process Imbalance: Where does it come from?

- Sizing
 - Non-minimum sized devices may have a different I_p/I_n ratio!
 - Small-channel effects $V_T = f(W,L)$

- Temperature
 - May change the relative strengths of PMOS and NMOS devices. (small effect)
Analyzing Sub-threshold Circuits

- Rule of thumb: Check to see if a circuit change makes the process more or less balanced to analyze robustness
Process Balance: Outline

- About Process Balance
- Implications & Examples
- Modeling
- Conclusions
Reporting and Comparing Sub-V_T Circuits

- Process Balance impacts circuit choices
- Processes with different balance points most likely require different circuits
- **Main Point:** Generalizations for Sub-V_T circuits only apply to other processes with similar Process Balance Factors (PBFs).
Implications on Leakage Control

- Process Balance has an effect on Leakage Control: On/off current ratio differs for P and N
- Power gating: gate the off-current using a PMOS device for a N-strong process, and with a NMOS device for a P-Strong Process.
Implications for Combinational Logic in Sub-Threshold

- Process Imbalance can have a large effect on noise margins.
- An order of magnitude difference in the PBF can cause a 30% shift in the switching threshold, V_M, of an inverter.
- Note that this is at the TYPICAL point; variations will make the switching worse!
Implications for SRAM Stability in Sub-Threshold

- Process Imbalance can affect SRAM stability at sub-threshold voltages.
- P-Strong moves TT trip-point above VDD/2
- N-strong moves TT trip-point below VDD/2
Implications for Sensitive Circuits in Sub-Threshold

- e.g. Process Imbalance can greatly effect resolution speed and even functionality of a sense amplifier in Sub-V_T.

N-Input SA | P-Input SA
Implications for Sensitive Circuits in Sub-Threshold

- N-Input SA, $V_{DD} = 0.3V$, N-Strong Process, TT Corner,

- N-Input SA, $V_{DD} = 0.3V$, N-Strong Process, FS Corner
Process Balance: Outline

- About Process Balance
- Implications & Examples
- Modeling
- Conclusions
Modeling Process Balance

- As shown, Process Imbalance effects Noise Margins most seriously
- Use an inverter to model this effect
Modeling Effects of Process Balance

- Model inverter V_M using by using Process Balance concept:
 - If N-Strong, $V_M < V_{DD}/2$
 - If P-Strong, $V_M > V_{DD}/2$
 - V_M can be found with simple geometry; $V_M = V_{DD}/2 + S \log(PBF)/2$
Modeling Effects of Process Balance

To contrast, VM can be found analytically:

\[
V_M = \frac{V_{DD} n_m (1 + \eta_p)}{n_m (1 + \eta_p) + n_p (1 + \eta_n)} + \frac{n_p V_{Th} - n_m V_{Tp}}{n_m (1 + \eta_p) + n_p (1 + \eta_n)} + \frac{n_n n_p V_{th} \ln \left(\frac{W/L}{P/L} I_{op} \right)}{n_n (1 + \eta_p) + n_p (1 + \eta_n)}
\]

\[
- \frac{n_n n_p V_{th} \ln \left(\frac{1 - \exp \left(\frac{-V_{DD} + V_M}{V_{th}} \right)}{1 - \exp \left(-V_M / V_{th} \right)} \right)}{n_n (1 + \eta_p) + n_p (1 + \eta_n)}
\]

\[n_x = \text{Sub-Threshold slope factor}, \ \eta_x = \text{DIBL Coefficient}, \ V_{th} = kT/q\]

By assuming equality between NMOS and PMOS devices (other than in \(V_T\)) and by ignoring the last term, one can show that this equation equals the one on the previous slide.
Modeling Effects of Process Balance

• Assume symmetry in N and P except for V_T and ignore DIBL ($\eta_x=0$):

$$V_M = \frac{V_{DD}}{2} + \frac{V_{Tn} - V_{Tp}}{2} + \frac{nV_{th} \ln \left(\frac{1 - \exp \left(-\frac{V_{Tn} + V_{TP}}{V_{th}} \right) }{1 - \exp \left(-\frac{V_{M}}{V_{th}} \right) } \right)}{2}$$

• Rightmost term models saturation near rails due to current roll-off. Ignore it if not near the rails:

$$V_M = \frac{V_{DD}}{2} + \frac{V_{Tn} - V_{Tp}}{2} = \frac{V_{DD}}{2} + \frac{S \log(PBF)}{2}$$
Modeling Effects of Process Balance

- Mean Percent Error ~ 3.2%
- Max Percent Error ~ 12% at PBF ~ 1/200
- Accurate model across 5 orders of magnitude.
Outline

- About Process Imbalance
- Implications & Examples
- Modeling
- Conclusions
Conclusions

- Process Balance strongly affects most aspects of sub-threshold integrated circuit design.
- Designs may not be portable between processes with widely different PBF (Process Balance Factor, the P/N current ratio).
- It is possible to use simple models to analyze the effects of process imbalance.
Thank you

- Any questions?