Serial Sub-threshold Circuits for Ultra-Low-Power Systems

Sudhanshu Khanna and Benton H. Calhoun
ECE Department, University of Virginia

ISLPED
Wednesday, August 19, 2009
Outline

• **Ultra Low Power (ULP) Systems and Sub-threshold**

• **ULP Sub-\(V_T\) Systems: Rethink the Topology**

• **Serial vs Parallel Systems @ Equal VDD**

• **Serial vs Parallel Systems @ Equal Speed**

• **Serial Components in Parallel Systems**
Ultra Low Power Systems

- RFID tags
- Wireless Micro-sensors
- Implantable, Wearable Medical Devices

Key features:
- Small Form Factor
- Remote, Inaccessible Locations

Thus, must have Long Battery Life

=> Low E consumption
ULP Systems: DESIGN FOR SLEEP

• Long Sleep Times:
 ▪ 0.25 sec: Heart Rate
 ▪ 1 Minute: Blood Pressure
 ▪ 1 Hour: Temperature
 ▪ 1 Day: Structural Health

• Total E = Active E + Sleep E

• DESIGN FOR SLEEP MODE: Focus on Reducing Leakage
Active and Sleep Modes

ACTIVE MODE Energy Components:

- Dynamic Energy = $C \cdot V^2$
- Leakage Energy = $V \cdot I_{lkg_active} \cdot \text{Delay}$
- I_{lkg_active} -> Active Mode Leakage

SLEEP MODE Energy Components:

- Sleep Mode Leakage Energy

 $= V \cdot I_{lkg_sleep} \cdot \text{Sleep_Time}$

- I_{lkg_sleep} -> Sleep Mode Leakage
Lower VDD => Lower Energy, Leakage: Sub-V_T

- Lowering VDD, Lowers:
 - Dynamic Energy $\sim V^2$
 - Leakage Current $\sim \exp(V)$

Strong-Inversion Design:
- High Active E & Leakage

Leakage Reduction:
- Power Gating
- Rev Body Bias
ULP systems put a much tighter constraint on leakage…. Much more so than Conventional Digital Systems

While going into \(\text{Sub-}V_T \),

Should the topology remain the same?
ULP Systems need a Small, Less Leaky Topology

WHY:
DESIGN FOR SLEEP!

TRADEOFF:
Slower Operation

How can this be overcome?
Making the Small, Slow Topology Faster

But why more E-efficient even after the VDD increase?
Sub-V_T: Helps Increase Speed @ Very Little Energy-Cost

Note: Normalized Data
Sub-V_T: Helps Increase Speed @ Very Little Energy-Cost

Note: Normalized Data
Making the Small, Slow Topology Faster

How do we make the Logic System Smaller & Less Leaky?
Small, Less Leaky Systems: By Lowering System Level Bit Width

• What is System Level Bit Width?
 – Number of bits processed concurrently
 – System Bit Width = 1 => Fully Serial System

• Smaller Bit Width means:
 – Less number of leakage paths
 – But... More cycles needed to finish the same operation

Varying System Bit Widths:
Intel 8 bit and ARM 32 bit processors
Why Lesser Leakage?

4b Ripple Carry Adder:

Serial Adder:
- Needs 4 cycles
- Lesser I_{lkg}
Lowering System Level Bit-Width

Systems compared:

- 1b SA-1
- 16b KSA-16
- 32b KSA-32

SA : Serial Adder

KSA: Kogge-Stone Adder
Outline

• Ultra Low Power (ULP) Systems and Sub-threshold

• ULP Sub-V_T Systems: Rethink the Topology

• Serial vs Parallel Systems @ Equal VDD

• Serial vs Parallel Systems @ Equal Speed

• Serial Components in Parallel Systems
Leakage and Delay @ Equal VDD

VDD = 300mV, data using 22nm PTM

Serial Systems Help Lower I_{lk}
Active E @ Equal VDD

Serial Systems help LOWER Active E:

- Almost no glitching
- Super-linear Area saving

VDD = 300mV, data using 22nm PTM
Total E @ Equal VDD

Higher the sleep time, higher the benefit of a Serial System

We take $I_{\text{lkg_sleep}} = 0.1 \times I_{\text{lkg_active}}$
Outline

• Ultra Low Power (ULP) Systems and Sub-threshold

• ULP Sub-V_T Systems: Rethink the Topology

• Serial vs Parallel Systems @ Equal VDD

• Serial vs Parallel Systems @ Equal Speed

• Serial Components in Parallel Systems
Active & Total E @ Equal Speed

<table>
<thead>
<tr>
<th>Sleep Time</th>
<th>Total E Consumed (pJ)</th>
<th>1b SA-1</th>
<th>16b KSA-16</th>
<th>32b KSA-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0.06</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>10us</td>
<td>0.21</td>
<td>0.80</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>1ms</td>
<td>14.90</td>
<td>70.50</td>
<td>85.90</td>
<td></td>
</tr>
<tr>
<td>VDD used</td>
<td>350mV</td>
<td>250mV</td>
<td>200mV</td>
<td></td>
</tr>
</tbody>
</table>

Even at the higher VDD a Serial System has lower:
- Active E
- Sleep E

Note: Delay kept at 0.1us
Conclusions @ Equal Delay

✓ In Sub-V_T, at slightly higher VDD, a Serial System becomes as fast as a Parallel System

✓ Even at the higher VDD, a Serial System has lower Active E & Sleep E

The constraint is that the ENTIRE system must be Serial
Vision of a Fully Serial System

• What’s already being done serially?
 – Successive Approximation Register (SAR) ADC
 – Radio / Wireless Communication

• Thus, i/p and o/p are already serial

• Examples of Serial Architectures:
 – Serial DSPs (Distributed Arithmetic, R. Amritharajah, et al, 2005)
 – Serial Architectures used in RFID chips
Serial Components in Parallel Systems

P-S and S-P interfaces will have:

- Active E overhead
- But we still get Leakage Current benefit

32b addition system with 32b KSA

32b addition system with a SA
32b system with a Serial Adder block

Parallel System with a Serial Adder Block:

- Has Higher Active E
- **But Helps Save** Sleep E
Contributions

• Small Bit-Width systems help save:
 – Active Mode E & Sleep Mode E
 – Can operate as fast as parallel systems by increasing VDD

• In the sub-V_T regime:
 – Simple topologies are more E efficient
 – Speed can be increased by increasing VDD @ little E cost

• Be flexible to “Re-Think the Topology”
 – As “porting” doesn’t lead to most E-efficient solution
 – Specially when design constraints change significantly
Thank you for your Time!
Backup slides ahead
ULP applications and Sub-V_T

- Energy consumed per operation is minimized with VDD in Sub-V_T

- As VDD increases:
 - Delay decreases
 - Leakage energy decreases
 - Dynamic energy increases
 - Total energy demonstrates a minima
Energy, Delay eqns above and below V_T are DIFFERENT

In Strong Inversion:
12x Speed-up costs 20x in Energy

In Sub-V_T:
12x Speed-up costs ONLY 1.3x in Energy
Results across a VDD range

- Active energy of 1b system < 32b system at all VDD points
- 15x benefit in Active Mode POWER at all VDD points
Equal Delay vs Equal VDD

Table: Power Consumption Comparison

<table>
<thead>
<tr>
<th>Topology</th>
<th>Zero Sleep</th>
<th>10µs</th>
<th>1s</th>
<th>P_{lk}</th>
<th>V_{DD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b SA-1</td>
<td>0.06</td>
<td>0.21</td>
<td>14919</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>16b KSA-16</td>
<td>0.10</td>
<td>0.80</td>
<td>70552</td>
<td>0.70</td>
<td>0.25</td>
</tr>
<tr>
<td>32b KSA-32</td>
<td>0.10</td>
<td>0.96</td>
<td>85852</td>
<td>0.86</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Notes:
- All systems working @ 10MHz.
- @ 1 SEC sleep time, 1b system has **5.7x lesser** E than 32b system.

Table: Power Consumption Comparison (Equal VDD)

<table>
<thead>
<tr>
<th>Topology</th>
<th>Zero Sleep</th>
<th>10µs</th>
<th>1ms</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b SA-1</td>
<td>0.05</td>
<td>0.07</td>
<td>2.72</td>
<td>2723</td>
</tr>
<tr>
<td>16b KSA-16</td>
<td>0.10</td>
<td>0.48</td>
<td>38.10</td>
<td>38096</td>
</tr>
<tr>
<td>32b KSA-32</td>
<td>0.10</td>
<td>0.96</td>
<td>85.85</td>
<td>85852</td>
</tr>
</tbody>
</table>

Notes:
- All systems working @ equal VDD.
- @ 1 SEC sleep time, 1b system has **32x lesser** E than 32b system.

Summary:
- At EQUAL DELAY, 1b systems are STILL MORE E efficient than 32b systems, though the **benefit comes down** from 32x to 5.7x.
Serial Systems become Pareto-optimal in Sub-V_T

Below a certain E-D point, 1b system has lesser energy for the same delay

Pareto-optimal E-D curves across sub-threshold and strong-inversion:
(a) active mode energy
(b) total energy with 10µs of sleep time.
Vision of a Fully Serial System

• Data enters 1b per clock cycle

• Every 32 cycles, a word:
 – Streams through the system
 – Undergoes processing
 – Is Communicated off-chip using the wireless link.