A 55nm Ultra Low Leakage Deeply Depleted Channel (DDC) Technology Optimized for Energy Minimization in Subthreshold SRAM and Logic

Harsh N. Patel, Abhishek Roy, Farah B. Yahya, Ningxi Liu, Benton Calhoun
University of Virginia, USA

Kazuyuki Kumeno, Makoto Yasuda, Akihiko Harada, Taiji Ema
Mie Fujitsu Semiconductor Ltd. Japan
Outline

- Motivation
- Sub-threshold design challenges
- Technology overview
- Results: technology-circuit co-design
- Comparison
Motivation

Wearable Device Shipments by Device Type and Markets: 2015-2020

- Smart Watches
- Smart Glasses
- Smart Clothing
- Fitness Trackers
- Body Sensors
- Wearable Cameras
- Other Wearables
Motivation

Energy Minimization demands sub-threshold operations.

[Ref.] Naveen Verma Trans. on Elec. 2008
Sub-V_T Challenges

- Reduced drive current (I_{ON})
- Device-to-device mismatch due to huge V_T variation
- High Leakage
- Reduced noise margin
Sub-V_T Challenges

![Graph showing normalized I_{ON}/I_{OFF} ratio for NMOS and PMOS transistors across different process corners (TT, FF, FS, SF, SS). The graph demonstrates higher variation and Ion/Ioff reduction.]

[Ref.] Harsh Patel et al., ISQED 2016
Available Solutions

Technologies:

<table>
<thead>
<tr>
<th>[3]</th>
<th>[6]</th>
<th>[7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32nm HK-MG</td>
<td>22nm ETSOI</td>
<td>FinFET</td>
</tr>
<tr>
<td>Provides higher I_{ON}; Reduced I_{OFF}</td>
<td>Improves performance</td>
<td>Improves performance</td>
</tr>
<tr>
<td>V_{DD} Scaling is limited to 1.0V (No sub-V_{TH} operation)</td>
<td>Doesn’t address V_{TH} variation (No stable operation)</td>
<td>Still higher V_{TH} variation (No stable operation)</td>
</tr>
</tbody>
</table>
Available Solutions
Circuit Design:

<table>
<thead>
<tr>
<th>High-V_T</th>
<th>Thick-Ox</th>
<th>Body Biasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel impurities [9]</td>
<td>Gate die-electric</td>
<td>Control body of FETs</td>
</tr>
<tr>
<td>- sub-threshold leakage (I_{OFF})</td>
<td>- Gate-leakage</td>
<td>- sub-threshold leakage (I_{OFF})</td>
</tr>
<tr>
<td>- RDF</td>
<td>- V_T Variation</td>
<td>- Junctional leakage</td>
</tr>
<tr>
<td>- Junctional leakage</td>
<td>- Device mismatch</td>
<td>- Saturates with increase in degree</td>
</tr>
</tbody>
</table>
Technology Overview

Technology:
Deeply Depleted Channel (DDC)

Gate Length (nm):
55

Devices:
Ultra-Low Leakage (ULL)

Enabling Circuit-level Technique:
Reverse Body Biasing (RBB)
Sub-\(V_T\) Challenges: Reduced \(I_{ON}\)

Sub-threshold Optimization:
- DDC shows higher \(I_{ON}/\mu m\)

Measured \(I_D\) vs \(V_{GS}\) across multiple samples and across process corners
Sub-V_T Challenges: V_T variation

V_T variation spread comparison

~30% V_T variation reduction
Sub-V_T Challenges: V_T variation

- DDC ULL
- Non-DDC Standard-V_T
- Non-DDC Low-V_T

Less Variation:
- 67% compared to SVT
- 45% compared to LVT

V_T roll-off comparison
Sub-V_T Challenges: Leakage

75X leakage reduction with higher degree of RBB

75X 6T bitcell leakage minimization with a higher degree of RBB.
Sub-V_T Challenges: Noise Margin

Butterfly curves for SRAM 6T bitcell: DDC ULL vs. non-DDC (conventional) bitcell
Test-Chip Results

- Circuit techniques (sub-V_T operation and RBB) are co-designed with the technology to maximize the energy power saving.

- 1Kb 6T SRAM, 32-bit FIR, and Ring. Osc.

Fabricated chip with 1kb SRAM and 16-bit FIR block
Test-Chip Results: SRAM

6X Energy reduction using RBB

Effectiveness of RBB: Higher leakage reduction and lower I_{ON} reduction
Test-Chip Results: FIR

Energy minimization using RBB (by leakage reduction)

Energy (pJ/cycle)

Delay (μs)
Test-Chip Results: RO

RBB is more effective at lower V_{DD}s (Sub-V_T range)
Comparison

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>[14]</th>
<th>[15]</th>
<th>[16]</th>
<th>[17]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech. (nm)</td>
<td>55</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Cell Type</td>
<td>6T</td>
<td>8T</td>
<td>9T</td>
<td>14T</td>
<td>8T</td>
</tr>
<tr>
<td>Transistor Type</td>
<td>ULL</td>
<td>NA</td>
<td>Mixed V_T</td>
<td>High-V_T</td>
<td>Low-Power</td>
</tr>
<tr>
<td>Array V_{MIN}</td>
<td>0.2V</td>
<td>0.35V</td>
<td>0.3V</td>
<td>0.5V</td>
<td>0.4V</td>
</tr>
<tr>
<td>Energy (fJ/bit)</td>
<td>31.25</td>
<td>870</td>
<td>18.2</td>
<td>14</td>
<td>78</td>
</tr>
</tbody>
</table>
References

Thank you!
Sub-V$_T$ Challenges: Increased I_{Gate}

Sub-threshold Optimization:

- Reduced gate leakage (by increasing TOX)
- without impacting V_T variation

Impact of increase in Gate-Oxide thickness (TOX) on V_T variation