A 256kb 6T Self-Tuning SRAM with Extended 0.38V-1.2V Operating Range using Multiple Read/Write Assists and V_{MIN} Tracking Canary Sensors

*Electrical and Computer Engineering
University of Virginia, Charlottesville

** John Poulton, **C. Thomas Gray
** Nvidia, Durham, North Carolina
IoE market rapidly growing
Motivation

- IoE market rapidly growing
- Battery recharge and replacement problems

IoE = Internet of Everything
Motivation

- IoE market rapidly growing
- Battery recharge and replacement problems
- Soln: ULP wide-range DVS

IoE = Internet of Everything, ULP = Ultra-low Power, DVS = Dynamic Voltage Scaling
Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
- SRAM V_{MIN} DVS bottleneck
Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
- SRAM V_{MIN} DVS bottleneck
- Dual rail SRAMs SoC level tradeoffs
Bottleneck in ULP wide-V_{DD} Range

- V_{MIN} guard-banding in 6Ts
- SRAM V_{MIN} DVS bottleneck
- Dual rail SRAMs SoC level tradeoffs
- Different solutions across applications
SRAM Solutions for ULP Applications

Trading off performance and area

[Source: Cliff Hou, TSMC, ISSCC 2017]
Scope of 6T SRAM Improvements

- Peripheral assist for V_{MIN} improvement

28nm TT_80C at V_{MIN} (without assist)

[Source: A. Banerjee. et al. ISQED 2014]
Scope of 6T SRAM Improvements

- Peripheral assist for V_{MIN} improvement
- Lower V_{MIN} guard-band

Tracking V_{MIN} could save energy

Normalized SRAM write energy per cycle at V_{MIN}

[Source: A. Banerjee. et al. ISQED 2014]
Scope of 6T SRAM Improvements

- Peripheral assist for V_{MIN} improvement
- Lower V_{MIN} guard-band
- Proposed Solution
 - Combined assist1 and Canary based V_{MIN} tracking2 reducing guardbanding

[Source: A. Banerjee. et al. ISQED 2014]

$^{[1]}$E. Karl et al., 2012; $^{[2]}$A. Banerjee et al. 2015]
Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion
Canary SRAM Sensors

- Canary SRAM a sensor or detector

[Source: http://animalphotos.info/a/topics/animals/birds/canaries/]
Canary SRAM Sensors

- Canary SRAM a sensor or detector
- Fails earlier than the population of SRAM bits

[Source: http://animalphotos.info/a/topics/animals/birds/canaries/]
Canary SRAM Sensors

- Canary SRAM a sensor or detector
- Fails earlier than the population of SRAM bits
- Prior work was in SRAM DRV* tracking¹

¹ [J. Wang, and B. H. Calhoun, CICC, 2007], *DRV=Data retention voltage;
Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion
Peripheral Assists and Reverse Assist

- What is a peripheral assist (PA) in SRAM context?
 - An auxiliary circuit that improve read/write-ability
Peripheral Assists and Reverse Assist

What is a peripheral assist (PA) in SRAM context?
- An auxiliary circuit that **improve** read/write-ability

What is reverse assist?
- An auxiliary circuit that **degrades** read/write-ability

SRAM bitcell + Reverse Assist = SRAM bitcell
Example: SRAM write V_{MIN} Distribution with Reverse Assist Settings (RAS)

Canary write V_{MIN} distribution shifts right with increasing RAS

[Source: A. Banerjee. et al. ISQED 2014]
Input and Output Design Metrics

<table>
<thead>
<tr>
<th>Input Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Number of SRAM bits on a chip</td>
</tr>
<tr>
<td>Y_{SRAM}</td>
</tr>
<tr>
<td>Core SRAM target yield</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Number of canary SRAM bits</td>
</tr>
<tr>
<td>F_{th}</td>
</tr>
<tr>
<td>Canary failure threshold condition</td>
</tr>
<tr>
<td>V_{RA} (RAS^1)</td>
</tr>
<tr>
<td>Canary BL type reverse assist voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{fc}</td>
</tr>
<tr>
<td>Canary SRAM chip failure probability</td>
</tr>
</tbody>
</table>

[Source: A. Banerjee. et al. ISQED 2014]

1RAS = Reverse assist settings; F_{th} = Failure threshold condition
Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion
256kb Self-tuning SRAM Architecture

WLB = Wordline Boost, NBL = Negative Bitline, VDD = Vdd Boost.
V_{MIN} Self-tuning Operation

1. Start
2. TRACK=1?
 - No: Keep the prev. V_{DD} and Assist Settings
 - Yes: Initialize LDO V_{DD} and Assists
3. Run CBIST
4. Canary Pass?
 - No: Increase LDO V_{DD}
 - Yes: Decrease LDO V_{DD}
5. Select Assists @ V_{DD}
6. End
Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion
Experiments and Results

- SRAM + PAs = Max 240mV V_{MIN} improvements
- Does not eliminate V_{MIN} guard-bands

$PA =$ Peripheral assists
V_{MIN} Lowering using Combined Read/Write Assists

Measured CDF showing V_{MIN} improvement w/ combined assist
Experiments and Results

- SRAM + PAs + Canaries = Arbitrary guard-band lowering can save 1444X active power

- SRAM + PAs + Canaries = 12.4X leakage savings

PA=Peripheral assists
Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking

- Actual chip V_{MIN}
- 90 percentile worst case V_{MIN}
- Combined Assists
- 337X reduction
- 1444X reduction
- 0.38V, 54.3µW
- 0.47V, 12.6µW
- 4.3X reduction (V_{MIN} tracking)
- 0.6V, 0.65V
- No assist
- $V_{\text{DDDB} + \text{WLB} + \text{NBLA}}$

Measured active power improvements
Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking

Measured active power improvements

- Actual chip V_{MIN}
- 90 percentile worst case V_{MIN}
- Combined Assists
- 1444X reduction
- 0.38V, 12.6µW
- 0.47V, 54.3µW
- 4.3X reduction (V_{MIN} tracking)
- 0.6V
- 0.65V
- 337X reduction
- 1.2V, 18.3mW
Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking

Measured active power improvements

- Actual chip V_{MIN}
- 90 percentile worst case V_{MIN}
- Combined Assists

- 1444X reduction
- 0.38V, 12.6µW
- 0.47V, 54.3µW
- 4.3X reduction (V_{MIN} tracking)
- 0.6V, 0.65V

- 337X reduction
- 0.6V, 0.65V

- 1.2V, 18.3mW
Leakage Power Reduction using Combined Assist and Canary Tracking

Actual chip V_{MIN}

12.4X leakage reduction from V_{DD} scaling at 0.38V

Measured leakage power improvements
Canary V_{MIN} Tracking @ 130nm Bulk

Measured canary V_{MIN} tracking across frequencies

Fth=1500, RAS=011
Canary V_{MIN} Tracking @ 130nm Bulk

Fth=1500, RAS=011

Settled system $V_{\text{MIN}} > $ SRAM V_{MIN}

Measured canary V_{MIN} tracking across frequencies
Canary V_{MIN} Tracking @ 130nm Bulk

Measured canary V_{MIN} tracking across frequencies

Fth=1500, RAS=011
Scalability of Canary Tracking @ 32nm FDSOI

Simulation results of canary based V_{MIN} Tracking at TT corner

Operating frequency (MHz)

Canary/SRAM V_{MIN} (V)

Settled system $V_{\text{MIN}} >$ SRAM V_{MIN}

Canary tuning range

32nm 27C
Overhead

- Canary area overhead only 0.77% (array)

- Combined assist area overhead 2.8% in SRAM

- Total system components without BISTs 1.8%

- Onetime canary tuning (matching the worst case SRAM bitcell) overhead

- Running ~ 90/282 cycles/V_{DD} granularity per frequency/temp change for full 512b/2kb canaries
Agenda

- Canary SRAM Sensors
- Peripheral Assists and Reverse Assists
- 256kb Self-tuning SRAM Architecture
- Experiments & Results
- Comparison
- Conclusion
Comparison

<table>
<thead>
<tr>
<th>Memory Features</th>
<th>VLSI’15 Technology</th>
<th>VLSI’15 Cell type</th>
<th>VLSI’15 Capacity</th>
<th>This work Technology</th>
<th>This work Cell type</th>
<th>This work Capacity</th>
<th>ISSCC’15 Technology</th>
<th>ISSCC’15 Cell type</th>
<th>ISSCC’15 Capacity</th>
<th>VLSI’14 Technology</th>
<th>VLSI’14 Cell type</th>
<th>ISSCC’12 Technology</th>
<th>ISSCC’12 Cell type</th>
<th>ISSCC’12 Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>14nm</td>
<td>8T</td>
<td>288kb</td>
<td>130nm</td>
<td>6T</td>
<td>256kb</td>
<td>28nm</td>
<td>6T</td>
<td>256kb</td>
<td>180nm</td>
<td>8T</td>
<td>22nm</td>
<td>6T</td>
<td>576KB</td>
</tr>
<tr>
<td>Cell type</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>288kb</td>
<td></td>
</tr>
<tr>
<td>DVS/VMIN Features</td>
<td>DVS range</td>
<td>1-0.3V (700mV)</td>
<td>288kb</td>
<td>1.2-0.38V (850mV)</td>
<td>256kb</td>
<td>0.9-0.58V (320mV)</td>
<td>1.8-0.6V (1200mV)</td>
<td>1-0.625V (375mV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>MIN</sub> Tracking</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>MIN</sub></td>
<td>0.3V</td>
<td>0.38V</td>
<td>0.58V</td>
<td>0.6V</td>
<td>0.7V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply / Power</td>
<td>Sub-VT Operation</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max power Reduction</td>
<td>-</td>
<td>1444X</td>
<td>-</td>
<td>16.4X</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- DVS: Dynamic Voltage Scaling
- VMIN: Minimum Voltage
- Sub-VT: Sub-threshold Voltage Technique
- Power Reduction

Source:
- VLSI’15
- ISSCC’15
- VLSI’14
- ISSCC’12
Conclusion

- A wide DVS range (1.2V-0.38V) with lower SRAM V_{MIN} (0.38V) achieved using multiple assists (write/read) across supplies

- Canary sensors track SRAM V_{MIN} for margin guard-band minimization

- Demonstrated a reliable and an adaptive SRAM system selecting optimal V_{DD} and assist techniques for ULP IoE enablement
Acknowledgements

- Advisor: Professor Ben Calhoun

- UVa Colleagues: Harsh Patel, Ningxi Liu, Farah Yahya, Divya A. K., Kevin Leach, Dilip Vasudevan, Terry Tigner

- Nvidia Colleagues: Tom Gray and John Poulton

- These projects was supported in part by NVIDIA through the DARPA PERFECT program
Thank You